Class PowerLawDistribution
- java.lang.Object
-
- org.apache.tinkerpop.gremlin.algorithm.generator.PowerLawDistribution
-
- All Implemented Interfaces:
Distribution
public class PowerLawDistribution extends Object implements Distribution
Generates values according to a scale-free distribution with the configured gamma value.- Author:
- Matthias Broecheler (me@matthiasb.com)
-
-
Constructor Summary
Constructors Constructor Description PowerLawDistribution(double gamma)
Constructs a new scale-free distribution for the provided gamma value.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static int
getValue(Random random, double multiplier, double beta)
Distribution
initialize(int invocations, int expectedTotal)
Initializes the distribution such that expectedTotal is equal to the expected sum of generated values after the given number of invocatiosn.int
nextConditionalValue(Random random, int otherValue)
Returns the next value conditional on another given value.int
nextValue(Random random)
Returns the next value.String
toString()
-
-
-
Method Detail
-
initialize
public Distribution initialize(int invocations, int expectedTotal)
Description copied from interface:Distribution
Initializes the distribution such that expectedTotal is equal to the expected sum of generated values after the given number of invocatiosn. Since most distributions have an element of randomness, these values are the expected values.- Specified by:
initialize
in interfaceDistribution
- Returns:
- A new distribution configured to match the expected total for the number of invocations.
-
nextValue
public int nextValue(Random random)
Description copied from interface:Distribution
Returns the next value. If this value is randomly generated, the randomness must be drawn from the provided random generator. DO NOT use your own internal random generator as this makes the generated values non-reproducible and leads to faulty behavior.- Specified by:
nextValue
in interfaceDistribution
- Parameters:
random
- random generator to use for randomness- Returns:
- next value
-
nextConditionalValue
public int nextConditionalValue(Random random, int otherValue)
Description copied from interface:Distribution
Returns the next value conditional on another given value. This can be used, for instance, to define conditional degree distributions where the in-degree is conditional on the out-degree. If this value is randomly generated, the randomness must be drawn from the provided random generator. DO NOT use your own internal random generator as this makes the generated values non-reproducible and leads to faulty behavior.- Specified by:
nextConditionalValue
in interfaceDistribution
- Parameters:
random
- random generator to use for randomnessotherValue
- The prior value- Returns:
- next value
-
getValue
public static int getValue(Random random, double multiplier, double beta)
-
-