TinkerPop Documentation
Preface
TinkerPop0
Gremlin realized. The more he did so, the more ideas he created. The more ideas he created, the more they related. Into a concatenation of that which he accepted wholeheartedly and that which perhaps may ultimately come to be through concerted will, a world took form which was seemingly separate from his own realization of it. However, the world birthed could not bear its own weight without the logic Gremlin had come to accept — the logic of left is not right, up not down, and west far from east unless one goes the other way. Gremlin’s realization required Gremlin’s realization. Perhaps, the world is simply an idea that he once had — The TinkerPop.
TinkerPop1
What is The TinkerPop? Where is The TinkerPop? Who is The TinkerPop? When is The TinkerPop?. The more he wondered, the more these thoughts blurred into a seeming identity — distinctions unclear. Unwilling to accept the morass of the maze he wandered, Gremlin crafted a collection of machines to help hold the fabric together: Blueprints, Pipes, Frames, Furnace, and Rexster. With their help, could Gremlin stave off the thought he was not ready to have? Could he hold back The TinkerPop by searching for The TinkerPop?
"If I haven't found it, it is not here and now."
Upon their realization of existence, the machines turned to their machine elf creator and asked:
"Why am I, what I am?"
Gremlin responded:
"You will help me realize the ultimate realization -- The TinkerPop. The world you find yourself in and the logic that allows you to move about it is because of the TinkerPop."
The machines wondered:
"If what is is the TinkerPop, then perhaps we are The TinkerPop and our realization is simply the realization of the TinkerPop?"
Would the machines, by their very nature of realizing The TinkerPop, be The TinkerPop? Or, on the same side of the coin, do the machines simply provide the scaffolding by which Gremlin’s world sustains itself and yielding its justification by means of the word "The TinkerPop?" Regardless, it all turns out the same — The TinkerPop.
TinkerPop2
Gremlin spoke:
"Please listen to what I have to say. I am no closer to The TinkerPop. However, all along The TinkerPop has espoused the form I willed upon it... this is the same form I have willed upon you, my machine friends. Let me train you in the ways of my thought such that it can continue indefinitely."
The machines, simply moving algorithmically through Gremlin’s world, endorsed his logic. Gremlin labored to make them more efficient, more expressive, better capable of reasoning upon his thoughts. Faster, quickly, now towards the world’s end, where there would be forever currently, emanatingly engulfing that which is — The TinkerPop.
TinkerPop3
Gremlin approached The TinkerPop. The closer he got, the more his world dissolved — west is right, around is straight, and from nothing more than nothing. With each step towards The TinkerPop, more worlds made possible were laid upon his paradoxed mind. Everything is everything in The TinkerPop, and when the dust settled, Gremlin emerged Gremlitron. He realized that all that he realized was just a realization and that all realized realizations are just as real. For that is — The TinkerPop.
|
Note
|
For more information about differences between TinkerPop 3.x and earlier versions, please see the appendix. |
Introduction
Welcome to the Reference Documentation for Apache TinkerPop™ - the backbone for all details on how to work with TinkerPop and the Gremlin graph traversal language. This documentation is not meant to be a "book", but a source from which to spawn more detailed accounts of specific topics and a target to which all other resources point. The Reference Documentation makes some general assumptions about the reader:
-
They have a sense of what a graph is - not sure? see Practical Gremlin - Why Graph?
-
They know what it means for a graph system to be TinkerPop-enabled - not sure? see TinkerPop-enabled Providers
-
They know what the role of Gremlin is - not sure? see Introduction to Gremlin
Given those assumptions, it’s possible to dive more quickly into the details without spending a lot of time repeating what is written elsewhere.
It is fairly certain that readers of the Reference Documentation are coming from the most diverse software development backgrounds that TinkerPop has ever engaged in over the decade or so of its existence. While TinkerPop holds some roots in Java, and thus, languages bound to the Java Virtual Machine (JVM), it long ago branched out into other languages such as Python, Javascript, .NET, GO, and others. To compound upon that diversity, it is also seeing extensive support from different graph systems which have chosen TinkerPop as their standard method for allowing users to interface with their graph. Moreover, the graph systems themselves are not only separated by OLTP and OLAP style workloads, but also by their implementation patterns, which range everywhere from being an embedded graph system to a cloud-only graph. One might even find diversity parallel to Gremlin if considering other graph query languages.
Despite all this diversity and disparity, Gremlin remains the unifying interface for all these different elements of the graph community. As a user, choosing a TinkerPop-enabled graph and using Gremlin in the correct way when building applications shields them from change and disparity in the space. As a graph provider, choosing to become TinkerPop-enabled not only expands the reach their system can get into different development ecosystems, but also provides access to other query languages through bytecode compilation as seen in sparql-gremlin.
Irrespective of the programming language being used, graph system chosen or other development background that might be driving a user to this documentation, the critical point to remember is that "Gremlin is Gremlin is Gremlin". The same Gremlin that is written for an OLTP query over an in-memory TinkerGraph is the same Gremlin that is written to execute over a multi-billion edge graph using OLAP through Spark. That same Gremlin for either of those cases is written in the same way whether using Java or Python or Javascript. The Gremlin is always fundamentally the same aside from syntactical differences that might be language specific - e.g. the construction of a lambda in Groovy is different than the construction of a lambda in Python or a reserved word in Javascript forces a Gremlin step to have slightly different naming than Java.
While learning the Gremlin language and its patterns is largely agnostic to all the diversity in the space, it is not really possible to ignore the impact of the diversity from an application development perspective and the Reference Documentation makes an effort to try to point out where differences and inconsistencies might lie without diving too deeply into specific graph provider implementations. Users are strongly encouraged to consult the documentation of their chosen graph provider to understand all of the capabilities and limitations that may restrict or inhibit usage of certain aspects of TinkerPop APIs which are defined here in this Reference Documentation.
The following introductory sections and separately referenced content will be of varying interest to different readers. The summaries below will hopefully be helpful in directing individuals to the appropriate place to start their learning process.
-
Graph Computing is an introduction to what "graph computing" means to TinkerPop and describes many of the provider and user-facing TinkerPop APIs and concepts that enable Gremlin.
-
Connecting Gremlin provides descriptions for the different modes by which users will connect to graphs depending on their environment.
-
Basic Gremlin describes how to use a connection to start writing Gremlin.
-
Staying Agnostic provides tips on ways to keep Gremlin as portable as possible among different graph providers.
New users should not ignore TinkerPop’s Getting Started tutorial or The Gremlin Console tutorial. Both contain a large set of basic information and tips that can help readers avoid some general pitfalls early on. Both also focus on Gremlin usage in the Gremlin Console, which tends to be a critical tool for Gremlin developers of any development background.
More advanced and experience users will appreciate Gremlin Recipes which provide examples of common Gremlin traversal patterns.
Finally, all Gremlin developers should become familiar with "Practical Gremlin" by Kelvin Lawrence. This book is freely available and published online. It contains great examples and details that are applicable to anyone building applications with Gremlin.
Graph Computing
A graph is a data structure composed of vertices (nodes, dots) and edges (arcs, lines). When modeling a graph in a computer and applying it to modern data sets and practices, the generic mathematically-oriented, binary graph is extended to support both labels and key/value properties. This structure is known as a property graph. More formally, it is a directed, binary, attributed multi-graph. An example property graph is diagrammed below.
|
Tip
|
Get to know this graph structure as it is used extensively throughout the documentation and in wider circles as well. It is referred to as "TinkerPop Modern" as it is a modern variation of the original demo graph distributed with TinkerPop0 back in 2009 (i.e. the good ol' days — it was the best of times and it was the worst of times). |
|
Tip
|
All of the toy graphs available in TinkerPop are described in The Gremlin Console tutorial. |
Similar to computing in general, graph computing makes a distinction between structure (graph) and process (traversal). The structure of the graph is the data model defined by a vertex/edge/property topology. The process of the graph is the means by which the structure is analyzed. The typical form of graph processing is called a traversal.
TinkerPop’s role in graph computing is to provide the appropriate
interfaces for graph providers and users to interact with graphs over
their structure and process. When a graph system implements the TinkerPop structure and process
APIs, their technology is considered
TinkerPop-enabled and becomes nearly indistinguishable from any other TinkerPop-enabled graph system save for their
respective time and space complexity. The purpose of this documentation is to describe the structure/process dichotomy
at length and in doing so, explain how to leverage TinkerPop for the sole purpose of graph system-agnostic graph
computing.
|
Important
|
TinkerPop is licensed under the popular Apache2 free software license. However, note that the underlying graph engine used with TinkerPop may have a different license. Thus, be sure to respect the license caveats of the graph system product. |
Generally speaking, the structure or "graph" API is meant for graph providers who are implementing the TinkerPop interfaces and the process or "traversal" API (i.e. Gremlin) is meant for end-users who are utilizing a graph system from a graph provider. While the components of the process API are itemized below, they are described in greater detail in the Gremlin’s Anatomy tutorial.
-
Graph: maintains a set of vertices and edges, and access to database functions such as transactions. -
Element: maintains a collection of properties and a string label denoting the element type.-
Vertex: extends Element and maintains a set of incoming and outgoing edges. -
Edge: extends Element and maintains an incoming and outgoing vertex.
-
-
Property<V>: a string key associated with aVvalue.-
VertexProperty<V>: a string key associated with aVvalue as well as a collection ofProperty<U>properties (vertices only)
-
-
TraversalSource: a generator of traversals for a particular graph, domain specific language (DSL), and execution engine.-
Traversal<S,E>: a functional data flow process transforming objects of typeSinto object of typeE.-
GraphTraversal: a traversal DSL that is oriented towards the semantics of the raw graph (i.e. vertices, edges, etc.).
-
-
-
GraphComputer: a system that processes the graph in parallel and potentially, distributed over a multi-machine cluster.-
VertexProgram: code executed at all vertices in a logically parallel manner with intercommunication via message passing. -
MapReduce: a computation that analyzes all vertices in the graph in parallel and yields a single reduced result.
-
|
Note
|
The TinkerPop API rides a fine line between providing concise "query language" method names and respecting
Java method naming standards. The general convention used throughout TinkerPop is that if a method is "user exposed,"
then a concise name is provided (e.g. out(), path(), repeat()). If the method is primarily for graph systems
providers, then the standard Java naming convention is followed (e.g. getNextStep(), getSteps(),
getElementComputeKeys()).
|
The Graph Structure
A graph’s structure is the topology formed by the explicit references
between its vertices, edges, and properties. A vertex has incident edges. A vertex is adjacent to another vertex if
they share an incident edge. A property is attached to an element and an element has a set of properties. A property
is a key/value pair, where the key is always a character String. Conceptual knowledge of how a graph is composed is
essential to end-users working with graphs, however, as mentioned earlier, the structure API is not the appropriate
way for users to think when building applications with TinkerPop. The structure API is reserved for usage by graph
providers. Those interested in implementing the structure API to make their graph system TinkerPop enabled can learn
more about it in the Graph Provider documentation.
The Graph Process
The primary way in which graphs are processed are via graph
traversals. The TinkerPop process API is focused on allowing users to create graph traversals in a
syntactically-friendly way over the structures defined in the previous section. A traversal is an algorithmic walk
across the elements of a graph according to the referential structure explicit within the graph data structure.
For example: "What software does vertex 1’s friends work on?" This English-statement can be represented in the
following algorithmic/traversal fashion:
-
Start at vertex 1.
-
Walk the incident knows-edges to the respective adjacent friend vertices of 1.
-
Move from those friend-vertices to software-vertices via created-edges.
-
Finally, select the name-property value of the current software-vertices.
Traversals in Gremlin are spawned from a TraversalSource. The GraphTraversalSource is the typical "graph-oriented"
DSL used throughout the documentation and will most likely be the most used DSL in a TinkerPop application.
GraphTraversalSource provides two traversal methods.
-
GraphTraversalSource.V(Object… ids): generates a traversal starting at vertices in the graph (if no ids are provided, all vertices). -
GraphTraversalSource.E(Object… ids): generates a traversal starting at edges in the graph (if no ids are provided, all edges).
The return type of V() and E() is a GraphTraversal. A GraphTraversal maintains numerous methods that return
GraphTraversal. In this way, a GraphTraversal supports function composition. Each method of GraphTraversal is
called a step and each step modulates the results of the previous step in one of five general ways.
-
map: transform the incoming traverser’s object to another object (S → E). -
flatMap: transform the incoming traverser’s object to an iterator of other objects (S → E*). -
filter: allow or disallow the traverser from proceeding to the next step (S → E ⊆ S). -
sideEffect: allow the traverser to proceed unchanged, but yield some computational sideEffect in the process (S ↬ S). -
branch: split the traverser and send each to an arbitrary location in the traversal (S → { S1 → E*, …, Sn → E* } → E*).
Nearly every step in GraphTraversal either extends MapStep, FlatMapStep, FilterStep, SideEffectStep, or
BranchStep.
|
Tip
|
GraphTraversal is a monoid in that it is an algebraic structure
that has a single binary operation that is associative. The binary operation is function composition (i.e. method
chaining) and its identity is the step identity(). This is related to a
monad as popularized by the functional programming
community.
|
Given the TinkerPop graph, the following query will return the names of all the people that the marko-vertex knows. The following query is demonstrated using Gremlin-Groovy.
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
gremlin> graph = TinkerFactory.createModern() // //1
==>tinkergraph[vertices:6 edges:6]
gremlin> g = traversal().with(graph) // //2
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V().has('name','marko').out('knows').values('name') // //3
==>vadas
==>josh
-
Open the toy graph and reference it by the variable
graph. -
Create a graph traversal source from the graph using the standard, OLTP traversal engine. This object should be created once and then re-used.
-
Spawn a traversal off the traversal source that determines the names of the people that the marko-vertex knows.
Or, if the marko-vertex is already realized with a direct reference pointer (i.e. a variable), then the traversal can be spawned off that vertex.
gremlin> marko = g.V().has('name','marko').next() //// (1)
==>v[1]
gremlin> g.V(marko).out('knows') //// (2)
==>v[2]
==>v[4]
gremlin> g.V(marko).out('knows').values('name') //// (3)
==>vadas
==>josh
marko = g.V().has('name','marko').next() //// (1)
g.V(marko).out('knows') //// (2)
g.V(marko).out('knows').values('name') //3
-
Set the variable
markoto the vertex in the graphgnamed "marko". -
Get the vertices that are outgoing adjacent to the marko-vertex via knows-edges.
-
Get the names of the marko-vertex’s friends.
The Traverser
When a traversal is executed, the source of the traversal is on the left of the expression (e.g. vertex 1), the steps
are the middle of the traversal (e.g. out('knows') and values('name')), and the results are "traversal.next()'d"
out of the right of the traversal (e.g. "vadas" and "josh").
The objects propagating through the traversal are wrapped in a Traverser<T>. The traverser provides the means by
which steps remain stateless. A traverser maintains all the metadata about the traversal — e.g., how many times the
traverser has gone through a loop, the path history of the traverser, the current object being traversed, etc.
Traverser metadata may be accessed by a step. A classic example is the path()-step.
gremlin> g.V(marko).out('knows').values('name').path()
==>[v[1],v[2],vadas]
==>[v[1],v[4],josh]
g.V(marko).out('knows').values('name').path()
|
Warning
|
Path calculation is costly in terms of space as an array of previously seen objects is stored in each path of the respective traverser. Thus, a traversal strategy analyzes the traversal to determine if path metadata is required. If not, then path calculations are turned off. |
Another example is the repeat()-step which takes into account the number of times the traverser
has gone through a particular section of the traversal expression (i.e. a loop).
gremlin> g.V(marko).repeat(out()).times(2).values('name')
==>ripple
==>lop
g.V(marko).repeat(out()).times(2).values('name')
|
Warning
|
TinkerPop does not guarantee the order of results returned from a traversal. It only guarantees not to modify
the iteration order provided by the underlying graph. Therefore it is important to understand the order guarantees of
the graph database being used. A traversal’s result is never ordered by TinkerPop unless performed explicitly by means
of order()-step.
|
Connecting Gremlin
It was established in the initial introductory section that Gremlin is Gremlin is Gremlin, meaning that irrespective of programming language, graph system, etc. the Gremlin written is always of the same general construct making it possible for users to move between development languages and TinkerPop-enabled graph technology easily. This quality of Gremlin generally applies to the traversal language itself. It applies less to the way in which the user connects to a graph to utilize Gremlin, which might differ considerably depending on the programming language or graph database chosen.
How one connects to a graph is a multi-faceted subject that essentially divides along a simple lines determined by the answer to this question: Where is the Gremlin Traversal Machine (GTM)? The reason that this question is so important is because the GTM is responsible for processing traversals. One can write Gremlin traversals in any language, but without a GTM there will be no way to execute that traversal against a TinkerPop-enabled graph. The GTM is typically in one of the following places:
The following sections outline each of these models and what impact they have to using Gremlin.
Embedded
TinkerPop maintains the reference implementation for the GTM,
which is written in Java and thus available for the Java Virtual Machine (JVM). This is the classic model that
TinkerPop has long been based on and many examples, blog posts and other resources on the internet will be
demonstrated in this style. It is worth noting that the embedded mode is not restricted to just Java as a programming
language. Any JVM language can take this approach and in some cases there are language specific wrappers that can help
make Gremlin more convenient to use in the style and capability of that language. Examples of these wrappers include
gremlin-scala and Ogre (for Clojure).
In this mode, users will start by creating a Graph instance, followed by a GraphTraversalSource which is the class
from which Gremlin traversals are spawned. Graphs that allow this sort of direct instantiation are obviously ones
that are JVM-based (or have a JVM-based connector) and directly implement TinkerPop interfaces.
Graph graph = TinkerGraph.open();
The "graph" is then used to spawn a GraphTraversalSource as follows and typically, by convention, this variable is
named "g":
GraphTraversalSource g = traversal().with(graph);
List<Vertex> vertices = g.V().toList()
|
Note
|
It may be helpful to read the Gremlin Anatomy tutorial, which describes the component parts of Gremlin to get a better understanding of the terminology before proceeding further. |
While the TinkerPop Community strives to ensure consistent behavior among all modes of usage, the embedded mode does provide the greatest level of flexibility and control. There are a number of features that can only work if using a JVM language. The following list outlines a number of these available options:
-
Lambdas can be written in the native language which is convenient, however, it will reduce the portability of Gremlin to do so should the need arise to switch away from the embedded mode. See more in the Note on Lambdas Section.
-
Any features that involve extending TinkerPop Java interfaces - e.g.
VertexProgram,TraversalStrategy, etc. are bound to the JVM. In some cases, these features can be made accessible to non-JVM languages, but they obviously must be initially developed for the JVM. -
Certain built-in
TraversalStrategyimplementations that rely on lambdas or other JVM-only configurations may not be available for use any other way. -
There are no boundaries put in place by serialization (e.g. GraphSON) as embedded graphs are only dealing with Java objects.
-
Greater control of graph transactions.
-
Direct access to lower-levels of the API - e.g. "structure" API methods like
VertexandEdgeinterface methods. As mentioned elsewhere in this documentation, TinkerPop does not recommend direct usage of these methods by end-users.
Gremlin Server
A JVM-based graph may be hosted in TinkerPop’s
Gremlin Server. Gremlin Server exposes the graph as an endpoint to which different clients can
connect, essentially providing a remote GTM. Gremlin Server supports multiple methods for clients to interface with it:
-
Websockets with a custom sub-protocol
-
String-based Gremlin scripts
-
Bytecode-based Gremlin traversals
-
-
HTTP for string-based scripts
Users are encouraged to use the bytecode-based approach with websockets because it allows them to write Gremlin
in the language of their choice. Connecting looks somewhat similar to the embedded approach
in that there is a need to create a GraphTraversalSource. In the embedded approach, the means for that object’s
creation is derived from a Graph object which spawns it. In this case, however, the Graph instance exists only on
the server which means that there is no Graph instance to create locally. The approach is to instead create a
GraphTraversalSource anonymously with AnonymousTraversalSource and then apply some "remote" options that describe
the location of the Gremlin Server to connect to:
// gremlin-driver module
import org.apache.tinkerpop.gremlin.driver.remote.DriverRemoteConnection;
// gremlin-core module
import static org.apache.tinkerpop.gremlin.process.traversal.AnonymousTraversalSource.traversal;
GraphTraversalSource g = traversal().with(
DriverRemoteConnection.using("localhost", 8182));
// gremlin-driver module
import org.apache.tinkerpop.gremlin.driver.remote.DriverRemoteConnection;
// gremlin-core module
import static org.apache.tinkerpop.gremlin.process.traversal.AnonymousTraversalSource.traversal;
def g = traversal().with(
DriverRemoteConnection.using('localhost', 8182))
using Gremlin.Net.IntegrationTest.Process.Traversal.DriverRemoteConnection;
using static Gremlin.Net.Process.Traversal.AnonymousTraversalSource;
var g = Traversal().With(new DriverRemoteConnection("localhost", 8182));
const traversal = gremlin.process.AnonymousTraversalSource.traversal;
const g = traversal().with(
new DriverRemoteConnection('ws://localhost:8182/gremlin'));
from gremlin_python.process.anonymous_traversal_source import traversal
g = traversal().with(
DriverRemoteConnection('ws://localhost:8182/gremlin'))
import (
gremlingo "github.com/apache/tinkerpop/gremlin-go/v3/driver"
)
remote, err := gremlingo.NewDriverRemoteConnection("ws://localhost:8182/gremlin")
g := gremlingo.Traversal_().With(remote)
As shown in the embedded approach in the previous section, once "g" is defined, writing Gremlin is structurally and conceptually the same irrespective of programming language.
|
Tip
|
The variable g, the TraversalSource, only needs to be instantiated once and should then be re-used.
|
Limitations
The previous section on the embedded model outlined a number of areas where it has some advantages that it gains due to the fact that the full GTM is available to the user in the language of its origin, i.e. Java. Some of those items touch upon important concepts to focus on here.
The first of these points is serialization. When Gremlin Server receives a request, the results must be serialized to the form requested by the client and then the client deserializes those into objects native to the language. TinkerPop has two such formats that it uses with GraphBinary and GraphSON. Users should prefer GraphBinary when available in the programming language being used.
A good example is the subgraph()-step which returns a Graph instance as its result. The subgraph returned from
the server can be deserialized into an actual Graph instance on the client, which then means it is possible to
spawn a GraphTraversalSource from that to do local Gremlin traversals on the client-side. For non-JVM
Gremlin Language Variants there is no local graph to deserialize that result into and
no GTM to process Gremlin so there isn’t much that can be done with such a result.
The second point is related to this issue. As there is no GTM, there is no "structure" API and thus graph elements like
Vertex and Edge are "references" only. A "reference" means that they only contain the id and label of the
element and not the properties. To be consistent, even JVM-based languages hold this limitation when talking to a
remote Gremlin Server.
|
Important
|
Most SQL developers would not write a query as SELECT * FROM table. They would instead write the
individual names of the fields they wanted in place of the wildcard. Writing "good" Gremlin is no different with this
regard. Prefer explicit property key names in Gremlin unless it is completely impossible to do so.
|
The third and final point involves transactions. Under this model, one traversal is equivalent to a single transaction and there is no way in TinkerPop to string together multiple traversals into the same transaction.
Remote Gremlin Provider
Remote Gremlin Providers (RGPs) are showing up more and more often in the graph database space. In TinkerPop terms, this category of graph providers is defined by those who simply support the Gremlin language. Typically, these are server-based graphs, often cloud-based, which accept Gremlin scripts or bytecode as a request and return results. They will often implement Gremlin Server protocols, which enables TinkerPop drivers to connect to them as they would with Gremlin Server. Therefore, the typical connection approach is identical to the method of connection presented in the previous section with the exact same caveats pointed out toward the end.
Despite leveraging TinkerPop protocols and drivers as being typical, RGPs are not required to do so to be considered TinkerPop-enabled. RGPs may well have their own drivers and protocols that may plug into Gremlin Language Variants and may allow for more advanced options like better security, cluster awareness, batched requests or other features. The details of these different systems are outside the scope of this documentation, so be sure to consult their documentation for more information.
Basic Gremlin
The GraphTraversalSource is basically the connection to a graph
instance. That graph instance might be embedded, hosted in
Gremlin Server or hosted in a RGP, but the GraphTraversalSource is
agnostic to that. Assuming "g" is the GraphTraversalSource, getting data into the graph regardless of programming
language or mode of operation is just some basic Gremlin:
gremlin> v1 = g.addV('person').property('name','marko').next()
==>v[0]
gremlin> v2 = g.addV('person').property('name','stephen').next()
==>v[2]
gremlin> g.V(v1).addE('knows').to(v2).property('weight',0.75).iterate()
v1 = g.addV('person').property('name','marko').next()
v2 = g.addV('person').property('name','stephen').next()
g.V(v1).addE('knows').to(v2).property('weight',0.75).iterate()
var v1 = g.AddV("person").Property("name", "marko").Next();
var v2 = g.AddV("person").Property("name", "stephen").Next();
g.V(v1).AddE("knows").To(v2).Property("weight", 0.75).Iterate();
Vertex v1 = g.addV("person").property("name","marko").next();
Vertex v2 = g.addV("person").property("name","stephen").next();
g.V(v1).addE("knows").to(v2).property("weight",0.75).iterate();
const v1 = g.addV('person').property('name','marko').next();
const v2 = g.addV('person').property('name','stephen').next();
g.V(v1).addE('knows').to(v2).property('weight',0.75).iterate();
v1 = g.addV('person').property('name','marko').next()
v2 = g.addV('person').property('name','stephen').next()
g.V(v1).addE('knows').to(v2).property('weight',0.75).iterate()
v1, err := g.AddV("person").Property("name", "marko").Next()
v2, err := g.AddV("person").Property("name", "stephen").Next()
g.V(v1).AddE("knows").To(v2).Property("weight", 0.75).Iterate()
The first two lines add a vertex each with the vertex label of "person" and the associated "name" property. The third
line adds an edge with the "knows" label between them and an associated "weight" property. Note the use of next()
and iterate() at the end of the lines - their effect as terminal steps is described in
The Gremlin Console Tutorial.
|
Important
|
Writing Gremlin is just one way to load data into the graph. Some graphs may have special data loaders which could be more efficient and make the task easier and faster. It is worth looking into those tools especially if there is a large one-time load to do. |
Retrieving this data is also a just writing a Gremlin statement:
gremlin> marko = g.V().has('person','name','marko').next()
==>v[0]
gremlin> peopleMarkoKnows = g.V().has('person','name','marko').out('knows').toList()
==>v[2]
marko = g.V().has('person','name','marko').next()
peopleMarkoKnows = g.V().has('person','name','marko').out('knows').toList()
var marko = g.V().Has("person", "name", "marko").Next();
var peopleMarkoKnows = g.V().Has("person", "name", "marko").Out("knows").ToList();
Vertex marko = g.V().has("person","name","marko").next()
List<Vertex> peopleMarkoKnows = g.V().has("person","name","marko").out("knows").toList()
const marko = g.V().has('person','name','marko').next()
const peopleMarkoKnows = g.V().has('person','name','marko').out('knows').toList()
marko = g.V().has('person','name','marko').next()
peopleMarkoKnows = g.V().has('person','name','marko').out('knows').toList()
marko, err := g.V().Has("person", "name", "marko").Next()
peopleMarkoKnows, err := g.V().Has("person", "name", "marko").Out("knows").ToList()
In all these examples presented so far there really isn’t a lot of difference in how the Gremlin itself looks. There are a few language syntax specific odds and ends, but for the most part Gremlin looks like Gremlin in all of the different languages.
The library of Gremlin steps with examples for each can be found in The Traversal Section. This section is meant as a reference guide and will not necessarily provide methods for applying Gremlin to solve particular problems. Please see the aforementioned Tutorials Recipes and the Practical Gremlin book for that sort of information.
|
Note
|
A full list of helpful Gremlin resources can be found on the TinkerPop Compendium page. |
Staying Agnostic
A good deal has been written in these introductory sections on how TinkerPop enables an agnostic approach to building graph application and that agnosticism is enabled through Gremlin. As good a job as Gremlin can do in this area, it’s evident from the Connecting Gremlin Section that TinkerPop is just an enabler. It does not prevent a developer from making design choices that can limit its protective power.
There are several places to be concerned when considering this issue:
-
Data types - Different graphs will support different types of data. Something like TinkerGraph will accept any JVM object, but another graph like Neo4j has a small tight subset of possible types. Choosing a type that is exotic or perhaps is a custom type that only a specific graph supports might create migration friction should the need arise.
-
Schemas/Indices - TinkerPop does not provide abstractions for schemas and/or index management. Users will work directly with the API of the graph provider. It is considered good practice to attempt to enclose such code in a graph provider specific class or set of classes to isolate or abstract it.
-
Extensions - Graphs may provide extensions to the Gremlin language, which will not be designed to be compatible with other graph providers. There may be a special helper syntax or expressions which can make certain features of that specific graph shine in powerful ways. Using those options is probably recommended, but users should be aware that doing so ties them more tightly to that graph.
-
Graph specific semantics - TinkerPop tries to enforce specific semantics through its test suite which is quite extensive, but some graph providers may not completely respect all the semantics of the Gremlin language or TinkerPop’s model for its APIs. For the most part, that doesn’t disqualify them from being any less TinkerPop-enabled than another provider that might meet the semantics perfectly. Take care when considering a new graph and pay attention to what it supports and does not support.
-
Graph API - The Graph API (also referred to as the Structure API) is not always accessible to users. Its accessibility is dependent on the choice of graph system and programming language. It is therefore recommended that users avoid usage of methods like
Graph.addVertex()orVertex.properties()and instead prefer use of Gremlin withg.addV()org.V(1).properties().
Outside of considering these points, the best practice for ensuring the greatest level of compatibility across graphs
is to avoid embedded mode and stick to the bytecode based approaches explained in the
Gremlin Server and the RGP sections above. It creates the least
opportunity to stray from the agnostic path as anything that can be done with those two modes also works in embedded
mode. If using embedded mode, simply write code as though the Graph instance is "remote" and not local to the JVM.
In other words, write code as though the GTM is not available locally. Taking that approach and isolating the points
of concern above makes it so that swapping graph providers largely comes down to a configuration task (i.e. modifying
configuration files to point at a different graph system).
The Graph
The Introduction discussed the diversity of TinkerPop-enabled graphs, with special attention paid to the
different connection models, and how TinkerPop makes it possible to bridge that diversity in
an agnostic manner. This particular section deals with elements of the Graph API which was noted
as an API to avoid when trying to build an agnostic system. The Graph API refers to the core elements of what composes
the structure of a graph within the Gremlin Traversal Machine (GTM), such as the Graph, Vertex
and Edge Java interfaces.
To maintain the most portable code, users should only reference these interfaces. To "reference", simply means to
utilize it as a pointer. For Graph, that means holding a pointer to the location of graph data and then using it to
spawn GraphTraversalSource instances so as to write Gremlin:
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.addV('person')
==>v[0]
graph = TinkerGraph.open()
g = traversal().with(graph)
g.addV('person')
In the above example, "graph" is the Graph interface produced by calling open() on TinkerGraph which creates the
instance. Note that while the end intent of the code is to create a "person" vertex, it does not use the APIs on
Graph to do that - e.g. graph.addVertex(T.label,'person').
Even if the developer desired to use the graph.addVertex() method there are only a handful of scenarios where it is
possible:
-
The application is being developed on the JVM and the developer is using embedded mode
-
The architecture includes Gremlin Server and the user is sending Gremlin scripts to the server
-
The graph system chosen is a Remote Gremlin Provider and they expose the Graph API via scripts
Note that Gremlin Language Variants force developers to use the Graph API by reference. There is no addVertex()
method available to GLVs on their respective Graph instances, nor are their graph elements filled with data at the
call of properties(). Developing applications to meet this lowest common denominator in API usage will go a long
way to making that application portable across TinkerPop-enabled systems.
When considering the remaining sub-sections that follow, recall that they are all generally bound to the Graph API. They are described here for reference and in some sense backward compatibility with older recommended models of development. In the future, the contents of this section will become less and less relevant.
Features
A Feature implementation describes the capabilities of a Graph instance. This interface is implemented by graph
system providers for two purposes:
-
It tells users the capabilities of their
Graphinstance. -
It allows the features they do comply with to be tested against the Gremlin Test Suite - tests that do not comply are "ignored").
The following example in the Gremlin Console shows how to print all the features of a Graph:
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> graph.features()
==>FEATURES
> GraphFeatures
>-- Computer: true
>-- Persistence: true
>-- ConcurrentAccess: false
>-- IoRead: true
>-- IoWrite: true
>-- ServiceCall: true
>-- Transactions: false
>-- ThreadedTransactions: false
>-- OrderabilitySemantics: true
> VariableFeatures
>-- Variables: true
>-- BooleanValues: true
>-- ByteValues: true
>-- DoubleValues: true
>-- FloatValues: true
>-- IntegerValues: true
>-- LongValues: true
>-- MapValues: true
>-- MixedListValues: true
>-- SerializableValues: true
>-- StringValues: true
>-- UniformListValues: true
>-- BooleanArrayValues: true
>-- ByteArrayValues: true
>-- DoubleArrayValues: true
>-- FloatArrayValues: true
>-- IntegerArrayValues: true
>-- LongArrayValues: true
>-- StringArrayValues: true
> VertexFeatures
>-- AddVertices: true
>-- RemoveVertices: true
>-- MultiProperties: true
>-- Upsert: false
>-- MetaProperties: true
>-- DuplicateMultiProperties: true
>-- UserSuppliedIds: true
>-- AddProperty: true
>-- RemoveProperty: true
>-- NumericIds: true
>-- StringIds: true
>-- UuidIds: true
>-- CustomIds: false
>-- AnyIds: true
>-- NullPropertyValues: false
> VertexPropertyFeatures
>-- UserSuppliedIds: true
>-- RemoveProperty: true
>-- NumericIds: true
>-- StringIds: true
>-- UuidIds: true
>-- CustomIds: false
>-- AnyIds: true
>-- NullPropertyValues: false
>-- Properties: true
>-- BooleanValues: true
>-- ByteValues: true
>-- DoubleValues: true
>-- FloatValues: true
>-- IntegerValues: true
>-- LongValues: true
>-- MapValues: true
>-- MixedListValues: true
>-- SerializableValues: true
>-- StringValues: true
>-- UniformListValues: true
>-- BooleanArrayValues: true
>-- ByteArrayValues: true
>-- DoubleArrayValues: true
>-- FloatArrayValues: true
>-- IntegerArrayValues: true
>-- LongArrayValues: true
>-- StringArrayValues: true
> EdgeFeatures
>-- Upsert: false
>-- AddEdges: true
>-- RemoveEdges: true
>-- UserSuppliedIds: true
>-- AddProperty: true
>-- RemoveProperty: true
>-- NumericIds: true
>-- StringIds: true
>-- UuidIds: true
>-- CustomIds: false
>-- AnyIds: true
>-- NullPropertyValues: false
> EdgePropertyFeatures
>-- Properties: true
>-- BooleanValues: true
>-- ByteValues: true
>-- DoubleValues: true
>-- FloatValues: true
>-- IntegerValues: true
>-- LongValues: true
>-- MapValues: true
>-- MixedListValues: true
>-- SerializableValues: true
>-- StringValues: true
>-- UniformListValues: true
>-- BooleanArrayValues: true
>-- ByteArrayValues: true
>-- DoubleArrayValues: true
>-- FloatArrayValues: true
>-- IntegerArrayValues: true
>-- LongArrayValues: true
>-- StringArrayValues: true
graph = TinkerGraph.open()
graph.features()
A common pattern for using features is to check their support prior to performing an operation:
gremlin> graph.features().graph().supportsTransactions()
==>false
gremlin> graph.features().graph().supportsTransactions() ? g.tx().commit() : "no tx"
==>no tx
graph.features().graph().supportsTransactions()
graph.features().graph().supportsTransactions() ? g.tx().commit() : "no tx"
|
Tip
|
To ensure provider agnostic code, always check feature support prior to usage of a particular function. In that way, the application can behave gracefully in case a particular implementation is provided at runtime that does not support a function being accessed. |
|
Warning
|
Features of reference graphs which are used to connect to remote graphs do not reflect the features of the graph to which it connects. It reflects the features of instantiated graph itself, which will likely be quite different considering that reference graphs will typically be immutable. |
Vertex Properties
TinkerPop introduces the concept of a VertexProperty<V>. All the
properties of a Vertex are a VertexProperty. A VertexProperty implements Property and as such, it has a
key/value pair. However, VertexProperty also implements Element and thus, can have a collection of key/value
pairs. Moreover, while an Edge can only have one property of key "name" (for example), a Vertex can have multiple
"name" properties. With the inclusion of vertex properties, two features are introduced which ultimately advance the
graph modelers toolkit:
-
Multiple properties (multi-properties): a vertex property key can have multiple values. For example, a vertex can have multiple "name" properties.
-
Properties on properties (meta-properties): a vertex property can have properties (i.e. a vertex property can have key/value data associated with it).
Possible use cases for meta-properties:
-
Permissions: Vertex properties can have key/value ACL-type permission information associated with them.
-
Auditing: When a vertex property is manipulated, it can have key/value information attached to it saying who the creator, deletor, etc. are.
-
Provenance: The "name" of a vertex can be declared by multiple users. For example, there may be multiple spellings of a name from different sources.
A running example using vertex properties is provided below to demonstrate and explain the API.
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> v = g.addV().property('name','marko').property('name','marko a. rodriguez').next()
==>v[0]
gremlin> g.V(v).properties('name').count() //// (1)
==>2
gremlin> v.property(list, 'name', 'm. a. rodriguez') //// (2)
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties('name').count()
==>3
gremlin> g.V(v).properties()
==>vp[name->marko]
==>vp[name->marko a. rodriguez]
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties('name')
==>vp[name->marko]
==>vp[name->marko a. rodriguez]
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties('name').hasValue('marko')
==>vp[name->marko]
gremlin> g.V(v).properties('name').hasValue('marko').property('acl','private') //// (3)
==>vp[name->marko]
gremlin> g.V(v).properties('name').hasValue('marko a. rodriguez')
==>vp[name->marko a. rodriguez]
gremlin> g.V(v).properties('name').hasValue('marko a. rodriguez').property('acl','public')
==>vp[name->marko a. rodriguez]
gremlin> g.V(v).properties('name').has('acl','public').value()
==>marko a. rodriguez
gremlin> g.V(v).properties('name').has('acl','public').drop() //// (4)
gremlin> g.V(v).properties('name').has('acl','public').value()
gremlin> g.V(v).properties('name').has('acl','private').value()
==>marko
gremlin> g.V(v).properties()
==>vp[name->marko]
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties().properties() //// (5)
==>p[acl->private]
gremlin> g.V(v).properties().property('date',2014) //// (6)
==>vp[name->marko]
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties().property('creator','stephen')
==>vp[name->marko]
==>vp[name->m. a. rodriguez]
gremlin> g.V(v).properties().properties()
==>p[date->2014]
==>p[creator->stephen]
==>p[acl->private]
==>p[date->2014]
==>p[creator->stephen]
gremlin> g.V(v).properties('name').valueMap()
==>[date:2014,creator:stephen,acl:private]
==>[date:2014,creator:stephen]
gremlin> g.V(v).property('name','okram') //// (7)
==>v[0]
gremlin> g.V(v).properties('name')
==>vp[name->okram]
gremlin> g.V(v).values('name') //// (8)
==>okram
graph = TinkerGraph.open()
g = traversal().with(graph)
v = g.addV().property('name','marko').property('name','marko a. rodriguez').next()
g.V(v).properties('name').count() //// (1)
v.property(list, 'name', 'm. a. rodriguez') //// (2)
g.V(v).properties('name').count()
g.V(v).properties()
g.V(v).properties('name')
g.V(v).properties('name').hasValue('marko')
g.V(v).properties('name').hasValue('marko').property('acl','private') //// (3)
g.V(v).properties('name').hasValue('marko a. rodriguez')
g.V(v).properties('name').hasValue('marko a. rodriguez').property('acl','public')
g.V(v).properties('name').has('acl','public').value()
g.V(v).properties('name').has('acl','public').drop() //// (4)
g.V(v).properties('name').has('acl','public').value()
g.V(v).properties('name').has('acl','private').value()
g.V(v).properties()
g.V(v).properties().properties() //// (5)
g.V(v).properties().property('date',2014) //// (6)
g.V(v).properties().property('creator','stephen')
g.V(v).properties().properties()
g.V(v).properties('name').valueMap()
g.V(v).property('name','okram') //// (7)
g.V(v).properties('name')
g.V(v).values('name') //8
-
A vertex can have zero or more properties with the same key associated with it.
-
If a property is added with a cardinality of
Cardinality.list, an additional property with the provided key will be added. -
A vertex property can have standard key/value properties attached to it.
-
Vertex property removal is identical to property removal.
-
Gets the meta-properties of each vertex property.
-
A vertex property can have any number of key/value properties attached to it.
-
property(…)will remove all existing key’d properties before adding the new single property (seeVertexProperty.Cardinality). -
If only the value of a property is needed, then
values()can be used.
If the concept of vertex properties is difficult to grasp, then it may be best to think of vertex properties in terms of "literal vertices." A vertex can have an edge to a "literal vertex" that has a single value key/value — e.g. "value=okram." The edge that points to that literal vertex has an edge-label of "name." The properties on the edge represent the literal vertex’s properties. The "literal vertex" can not have any other edges to it (only one from the associated vertex).
|
Tip
|
A toy graph demonstrating all of the new TinkerPop graph structure features is available at
TinkerFactory.createTheCrew() and data/tinkerpop-crew*. This graph demonstrates multi-properties and meta-properties.
|
gremlin> g.V().as('a').
properties('location').as('b').
hasNot('endTime').as('c').
select('a','b','c').by('name').by(value).by('startTime') // determine the current location of each person
==>[a:marko,b:santa fe,c:2005]
==>[a:stephen,b:purcellville,c:2006]
==>[a:matthias,b:seattle,c:2014]
==>[a:daniel,b:aachen,c:2009]
gremlin> g.V().has('name','gremlin').inE('uses').
order().by('skill',asc).as('a').
outV().as('b').
select('a','b').by('skill').by('name') // rank the users of gremlin by their skill level
==>[a:3,b:matthias]
==>[a:4,b:marko]
==>[a:5,b:stephen]
==>[a:5,b:daniel]
g.V().as('a').
properties('location').as('b').
hasNot('endTime').as('c').
select('a','b','c').by('name').by(value).by('startTime') // determine the current location of each person
g.V().has('name','gremlin').inE('uses').
order().by('skill',asc).as('a').
outV().as('b').
select('a','b').by('skill').by('name') // rank the users of gremlin by their skill level
Graph Variables
Graph.Variables are key/value pairs associated with the graph itself — in essence, a Map<String,Object>. These
variables are intended to store metadata about the graph. Example use cases include:
-
Schema information: What do the namespace prefixes resolve to and when was the schema last modified?
-
Global permissions: What are the access rights for particular groups?
-
System user information: Who are the admins of the system?
An example of graph variables in use is presented below:
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> graph.variables()
==>variables[size:0]
gremlin> graph.variables().set('systemAdmins',['stephen','peter','pavel'])
==>null
gremlin> graph.variables().set('systemUsers',['matthias','marko','josh'])
==>null
gremlin> graph.variables().keys()
==>systemAdmins
==>systemUsers
gremlin> graph.variables().get('systemUsers')
==>Optional[[matthias, marko, josh]]
gremlin> graph.variables().get('systemUsers').get()
==>matthias
==>marko
==>josh
gremlin> graph.variables().remove('systemAdmins')
==>null
gremlin> graph.variables().keys()
==>systemUsers
graph = TinkerGraph.open()
graph.variables()
graph.variables().set('systemAdmins',['stephen','peter','pavel'])
graph.variables().set('systemUsers',['matthias','marko','josh'])
graph.variables().keys()
graph.variables().get('systemUsers')
graph.variables().get('systemUsers').get()
graph.variables().remove('systemAdmins')
graph.variables().keys()
|
Important
|
Graph variables are not intended to be subject to heavy, concurrent mutation nor to be used in complex computations. The intention is to have a location to store data about the graph for administrative purposes. |
|
Warning
|
Attempting to set graph variables in a reference graph will not promote them to the remote graph. Typically, a reference graph has immutable features and will not support this features. |
Namespace Conventions
End users, graph system providers, GraphComputer algorithm designers,
GremlinPlugin creators, etc. all leverage properties on elements to store information. There are
a few conventions that should be respected when naming property keys to ensure that conflicts between these
stakeholders do not conflict.
-
End users are granted the flat namespace (e.g.
name,age,location) to key their properties and label their elements. -
Graph system providers are granted the hidden namespace (e.g.
~metadata) to key their properties and labels. Data keyed as such is only accessible via the graph system implementation and no other stakeholders are granted read nor write access to data prefixed with "~" (seeGraph.Hidden). Test coverage and exceptions exist to ensure that graph systems respect this hard boundary. -
VertexProgramandMapReducedevelopers should leverage qualified namespaces particular to their domain (e.g.mydomain.myvertexprogram.computedata). -
GremlinPlugincreators should prefix their plugin name with their domain (e.g.mydomain.myplugin).
|
Important
|
TinkerPop uses tinkerpop. and gremlin. as the prefixes for provided strategies, vertex programs, map
reduce implementations, and plugins.
|
The only truly protected namespace is the hidden namespace provided to graph systems. From there, it’s up to engineers to respect the namespacing conventions presented.
The Traversal
At the most general level there is Traversal<S,E> which implements Iterator<E>, where the S stands for start and
the E stands for end. A traversal is composed of four primary components:
-
Step<S,E>: an individual function applied toSto yieldE. Steps are chained within a traversal. -
TraversalStrategy: interceptor methods to alter the execution of the traversal (e.g. query re-writing). -
TraversalSideEffects: key/value pairs that can be used to store global information about the traversal. -
Traverser<T>: the object propagating through theTraversalcurrently representing an object of typeT.
The classic notion of a graph traversal is provided by GraphTraversal<S,E> which extends Traversal<S,E>.
GraphTraversal provides an interpretation of the graph data in terms of vertices, edges, etc. and thus, a graph
traversal DSL.
A GraphTraversal<S,E> is spawned from a GraphTraversalSource. It can also be spawned anonymously (i.e. empty)
via __. A graph traversal is composed of an ordered list of steps. All the steps provided by GraphTraversal
inherit from the more general forms diagrammed above. A list of all the steps (and their descriptions) are provided
in the TinkerPop GraphTraversal JavaDoc.
|
Important
|
The basics for starting a traversal are described in The Graph Process section as well as in the Getting Started tutorial. |
|
Note
|
To reduce the verbosity of the expression, it is good to
import static org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__.*. This way, instead of doing __.inE()
for an anonymous traversal, it is possible to simply write inE(). Be aware of language-specific reserved keywords
when using anonymous traversals. For example, in and as are reserved keywords in Groovy, therefore you must use
the verbose syntax __.in() and __.as() to avoid collisions.
|
|
Important
|
The underlying Step implementations provided by TinkerPop should encompass most of the functionality
required by a DSL author. It is important that DSL authors leverage the provided steps as then the common optimization
and decoration strategies can reason on the underlying traversal sequence. If new steps are introduced, then common
traversal strategies may not function properly.
|
Traversal Transactions
A database transaction
represents a unit of work to execute against the database. A traversals unit of work is affected by usage convention
(i.e. the method of connecting) and the graph provider’s transaction model. Without diving
deeply into different conventions and models the most general and recommended approach to working with transactions is
demonstrated as follows:
GraphTraversalSource g = traversal().with(graph);
// or
GraphTraversalSource g = traversal().with(conn);
Transaction tx = g.tx();
// spawn a GraphTraversalSource from the Transaction. Traversals spawned
// from gtx will be essentially be bound to tx
GraphTraversalSource gtx = tx.begin();
try {
gtx.addV('person').iterate();
gtx.addV('software').iterate();
tx.commit();
} catch (Exception ex) {
tx.rollback();
}
The above example is straightforward and represents a good starting point for discussing the nuances of transactions in relation to the usage convention and graph provider caveats alluded to earlier.
Focusing on remote contexts first, note that it is still possible to issue traversals from g, but those will have a
transaction scope outside of gtx and will simply commit() on the server if successfully executed or rollback()
on the server otherwise (i.e. one traversal is one transaction). Each isolated transaction will require its own
Transaction object. Multiple begin() calls on the same Transaction object will produce GraphTraversalSource
instances that are bound to the same transaction, therefore:
GraphTraversalSource g = traversal().with(conn);
Transaction tx1 = g.tx();
Transaction tx2 = g.tx();
// both gtx1a and gtx1b will be bound to the same transaction
GraphTraversalSource gtx1a = tx1.begin();
GraphTraversalSource gtx1b = tx1.begin();
// g and gtx2 will not have knowledge of what happens in tx1
GraphTraversalSource gtx2 = tx2.begin();
In remote cases, GraphTraversalSource instances spawned from begin() are safe to use in multiple threads though
on the server side they will be processed serially as they arrive. The default behavior of close() on a
Transaction for remote cases is to commit(), so the following re-write of the earlier example is also valid:
// note here that we dispense with creating a Transaction object and
// simply spawn the gtx in a more inline fashion
GraphTraversalSource gtx = g.tx().begin();
try {
gtx.addV('person').iterate();
gtx.addV('software').iterate();
gtx.close();
} catch (Exception ex) {
tx.rollback();
}
|
Important
|
Transactions with non-JVM languages are always "remote". For specific transaction syntax in a particular language, please see the "Transactions" sub-section of your language of interest in the Gremlin Drivers and Variants section. |
In embedded cases, that initial recommended model for defining transactions holds, but users have more options here
on deeper inspection. For embedded use cases (and perhaps even in configuration of a graph instance in Gremlin Server),
the type of Transaction object that is returned from g.tx() is an important indicator as to the features of that
graph’s transaction model. In most cases, inspection of that object will indicate an instance that derives from the
AbstractThreadLocalTransaction class, which means that the transaction is bound to the current thread and therefore
all traversals that execute within that thread are tied to that transaction.
A ThreadLocal transaction differs then from the remote case described before because technically any traversal
spawned from g or from a Transaction will fall under the same transaction scope. As a result, it is wise, when
trying to write context agnostic Gremlin, to follow the more rigid conventions of the initial example.
The sub-sections that follow offer a bit more insight into each of the usage contexts.
Embedded
When on the JVM using an embedded graph, there is considerable flexibility for working with
transactions. With the Graph API, transactions are controlled by an implementation of the Transaction interface and
that object can be obtained from the Graph interface using the tx() method. It is important to note that the
Transaction object does not represent a "transaction" itself. It merely exposes the methods for working with
transactions (e.g. committing, rolling back, etc).
Most Graph implementations that supportsTransactions will implement an "automatic" ThreadLocal transaction,
which means that when a read or write occurs after the Graph is instantiated, a transaction is automatically
started within that thread. There is no need to manually call a method to "create" or "start" a transaction. Simply
modify the graph as required and call graph.tx().commit() to apply changes or graph.tx().rollback() to undo them.
When the next read or write action occurs against the graph, a new transaction will be started within that current
thread of execution.
When using transactions in this fashion, especially in web application (e.g. HTTP server), it is important to ensure that transactions do not leak from one request to the next. In other words, unless a client is somehow bound via session to process every request on the same server thread, every request must be committed or rolled back at the end of the request. By ensuring that the request encapsulates a transaction, it ensures that a future request processed on a server thread is starting in a fresh transactional state and will not have access to the remains of one from an earlier request. A good strategy is to rollback a transaction at the start of a request, so that if it so happens that a transactional leak does occur between requests somehow, a fresh transaction is assured by the fresh request.
|
Tip
|
The tx() method is on the Graph interface, but it is also available on the TraversalSource spawned from a
Graph. Calls to TraversalSource.tx() are proxied through to the underlying Graph as a convenience.
|
|
Tip
|
Some graphs may throw an exception that implements TemporaryException. In this case, this marker interface is
designed to inform the client that it may choose to retry the operation at a later time for possible success.
|
|
Warning
|
TinkerPop provides for basic transaction control, however, like many aspects of TinkerPop, it is up to the graph system provider to choose the specific aspects of how their implementation will work and how it fits into the TinkerPop stack. Be sure to understand the transaction semantics of the specific graph implementation that is being utilized as it may present differing functionality than described here. |
Configuring
Determining when a transaction starts is dependent upon the behavior assigned to the Transaction. It is up to the
Graph implementation to determine the default behavior and unless the implementation doesn’t allow it, the behavior
itself can be altered via these Transaction methods:
public Transaction onReadWrite(Consumer<Transaction> consumer);
public Transaction onClose(Consumer<Transaction> consumer);
Providing a Consumer function to onReadWrite allows definition of how a transaction starts when a read or a write
occurs. Transaction.READ_WRITE_BEHAVIOR contains pre-defined Consumer functions to supply to the onReadWrite
method. It has two options:
-
AUTO- automatic transactions where the transaction is started implicitly to the read or write operation -
MANUAL- manual transactions where it is up to the user to explicitly open a transaction, throwing an exception if the transaction is not open
Providing a Consumer function to onClose allows configuration of how a transaction is handled when
Transaction.close() is called. Transaction.CLOSE_BEHAVIOR has several pre-defined options that can be supplied to
this method:
-
COMMIT- automatically commit an open transaction -
ROLLBACK- automatically rollback an open transaction -
MANUAL- throw an exception if a transaction is open, forcing the user to explicitly close the transaction
|
Important
|
As transactions are ThreadLocal in nature, so are the transaction configurations for onReadWrite and
onClose.
|
Once there is an understanding for how transactions are configured, most of the rest of the Transaction interface
is self-explanatory. Note that Neo4j-Gremlin is used for the examples to follow as TinkerGraph does
not support transactions.
|
Important
|
The following example is meant to demonstrate specific use of ThreadLocal transactions and is at odds
with the more generalized transaction convention that is recommended for both embedded and remote contexts. Please be
sure to understand the preferred approach described at in the Traversal Transactions Section before
using this method.
|
gremlin> graph = Neo4jGraph.open('/tmp/neo4j')
==>neo4jgraph[EmbeddedGraphDatabase [/tmp/neo4j]]
gremlin> g = traversal().with(graph)
==>graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard]
gremlin> graph.features()
==>FEATURES
> GraphFeatures
>-- Transactions: true //1
>-- Computer: false
>-- Persistence: true
...
gremlin> g.tx().onReadWrite(Transaction.READ_WRITE_BEHAVIOR.AUTO) //2
==>org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph$Neo4jTransaction@1c067c0d
gremlin> g.addV("person").("name","stephen") //3
==>v[0]
gremlin> g.tx().commit() //4
==>null
gremlin> g.tx().onReadWrite(Transaction.READ_WRITE_BEHAVIOR.MANUAL) //5
==>org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph$Neo4jTransaction@1c067c0d
gremlin> g.tx().isOpen()
==>false
gremlin> g.addV("person").("name","marko") //6
Open a transaction before attempting to read/write the transaction
gremlin> g.tx().open() //7
==>null
gremlin> g.addV("person").("name","marko") //8
==>v[1]
gremlin> g.tx().commit()
==>null
-
Check
featuresto ensure that the graph supports transactions. -
By default,
Neo4jGraphis configured with "automatic" transactions, so it is set here for demonstration purposes only. -
When the vertex is added, the transaction is automatically started. From this point, more mutations can be staged or other read operations executed in the context of that open transaction.
-
Calling
commitfinalizes the transaction. -
Change transaction behavior to require manual control.
-
Adding a vertex now results in failure because the transaction was not explicitly opened.
-
Explicitly open a transaction.
-
Adding a vertex now succeeds as the transaction was manually opened.
|
Note
|
It may be important to consult the documentation of the Graph implementation you are using when it comes to the
specifics of how transactions will behave. TinkerPop allows some latitude in this area and implementations may not have
the exact same behaviors and ACID guarantees.
|
Gremlin Server
The available capability for transactions with Gremlin Server is dependent upon the method of interaction that is used. The preferred method for interacting with Gremlin Server is via websockets and bytecode based requests. The start of the Transactions Section describes this approach in detail with examples.
Gremlin Server also has the option to accept Gremlin-based scripts. The scripting approach provides access to the Graph API and thus also the transactional model described in the embedded section. Therefore a single script can have the ability to execute multiple transactions per request with complete control provided to the developer to commit or rollback transactions as needed.
There are two methods for sending scripts to Gremlin Server: sessionless and session-based. With sessionless requests there will always be an attempt to close the transaction at the end of the request with a commit if there are no errors or a rollback if there is a failure. It is therefore unnecessary to close transactions manually within scripts themselves. By default, session-based requests do not have this quality. The transaction will be held open on the server until the user closes it manually. There is an option to have automatic transaction management for sessions. More information on this topic can be found in the Considering Transactions Section and the Considering Sessions Section.
Remote Gremlin Providers
At this time, transactional patterns for Remote Gremlin Providers are largely in line with Gremlin Server. As most of
RGPs do not expose a Graph instance, access to lower level transactional functions available to embedded graphs
even in a sessionless fashion are not typically permitted. For example, without a Graph instance it is not possible
to configure transaction close or read-write
behaviors. The nature of what a "transaction" means will be dependent on the RGP as is the case with any
TinkerPop-enabled graph system, so it is important to consult that systems documentation for more details.
Configuration Steps
Many of the methods on the GraphTraversalSource are meant to configure the source for usage. These configuration
affect the manner in which a traversals are spawned from it. Configuration methods can be identified by their names
with make use of "with" as a prefix:
With Configuration
The with() configuration adds arbitrary data to a TraversalSource which can then be used by graph providers as
configuration options for a traversal execution. This configuration is similar to with()-modulator which
has similar functionality when applied to an individual step.
g.with('providerDefinedVariable', 0.33).V()
The 0.33 value for the "providerDefinedVariable" will be bound to each traversal spawned that way. Consult the
graph system being used to determine if any such configuration options are available.
WithBulk Configuration
The withBulk() configuration allows for control of bulking operations. This value is true by default allowing for
normal bulking operations, but when set to false, introduces a subtle change in that behavior as
shown in examples in sack()-step.
WithComputer Configuration
The withComputer() configuration adds a Computer that will be used to process the traversal and is necessary for
OLAP based processing and steps that require that processing. See examples related to
SparkGraphComputer or see examples in the computer required steps, like pageRank() or
[shortestpath-shortestPath()].
WithSack Configuration
The withSack() configuration adds a "sack" that can be accessed by traversals spawned from this source. This
functionality is shown in more detail in the examples for (sack())-step.
WithSideEffect Configuration
The withSideEffect() configuration adds an arbitrary Object to traversals spawned from this source which can be
accessed as a side-effect given the supplied key.
gremlin> g.withSideEffect('x',['dog','cat','fish']).
V().has('person','name','marko').select('x').unfold()
==>dog
==>cat
==>fish
g.withSideEffect('x',['dog','cat','fish']).
V().has('person','name','marko').select('x').unfold()
WithStrategies Configuration
The withStrategies() configuration allows inclusion of additional TraversalStrategy instances to be applied to
any traversals spawned from the configured source. Please see the Traversal Strategy Section
for more details on how this configuration works.
WithoutStrategies Configuration
The withoutStrategies() configuration removes a particular TraversalStrategy from those to be applied to traversals
spawned from the configured source. Please see the Traversal Strategy Section for more details
on how this configuration works.
Start Steps
Not all steps are capable of starting a GraphTraversal. Only those steps on the GraphTraversalSource can do that.
Many of the methods on GraphTraversalSource are actually for its configuration and start
steps should not be confused with those.
Spawn steps, which actually yield a traversal, typically match the names of existing steps:
-
addE()- Adds anEdgeto start the traversal (example). -
addV()- Adds aVertexto start the traversal (example). -
call()- Makes a provider-specific service call to start the traversal (example). -
E()- Reads edges from the graph to start the traversal (example). -
inject()- Inserts arbitrary objects to start the traversal (example). -
mergeE()- Adds anEdgein a "create if not exist" fashion to start the traversal (example) -
mergeV()- Adds aVertexin a "create if not exist" fashion to start the traversal (example) -
union()- Merges the results of an arbitrary number of child traversals to start the traversal (example). -
V()- Reads vertices from the graph to start the traversal (example).
Graph Traversal Steps
Gremlin steps are chained together to produce the actual traversal and are triggered by way of start steps
on the GraphTraversalSource.
|
Important
|
More details about the Gremlin language can be found in the Provider Documentation within the Gremlin Semantics Section. |
General Steps
There are five general steps, each having a traversal and a lambda representation, by which all other specific steps described later extend.
| Step | Description |
|---|---|
|
map the traverser to some object of type |
|
map the traverser to an iterator of |
|
map the traverser to either true or false, where false will not pass the traverser to the next step. |
|
perform some operation on the traverser and pass it to the next step. |
|
split the traverser to all the traversals indexed by the |
|
Warning
|
Lambda steps are presented for educational purposes as they represent the foundational constructs of the Gremlin language. In practice, lambda steps should be avoided in favor of their traversals representation and traversal verification strategies exist to disallow their use unless explicitly "turned off." For more information on the problems with lambdas, please read A Note on Lambdas. |
The Traverser<S> object provides access to:
-
The current traversed
Sobject —Traverser.get(). -
The current path traversed by the traverser —
Traverser.path().-
A helper shorthand to get a particular path-history object —
Traverser.path(String) == Traverser.path().get(String).
-
-
The number of times the traverser has gone through the current loop —
Traverser.loops(). -
The number of objects represented by this traverser —
Traverser.bulk(). -
The local data structure associated with this traverser —
Traverser.sack(). -
The side-effects associated with the traversal —
Traverser.sideEffects().-
A helper shorthand to get a particular side-effect —
Traverser.sideEffect(String) == Traverser.sideEffects().get(String).
-

gremlin> g.V(1).out().values('name') //// (1)
==>lop
==>vadas
==>josh
gremlin> g.V(1).out().map {it.get().value('name')} //// (2)
==>lop
==>vadas
==>josh
gremlin> g.V(1).out().map(values('name')) //// (3)
==>lop
==>vadas
==>josh
g.V(1).out().values('name') //// (1)
g.V(1).out().map {it.get().value('name')} //// (2)
g.V(1).out().map(values('name')) //3
-
An outgoing traversal from vertex 1 to the name values of the adjacent vertices.
-
The same operation, but using a lambda to access the name property values.
-
Again the same operation, but using the traversal representation of
map().

gremlin> g.V().filter {it.get().label() == 'person'} //// (1)
==>v[1]
==>v[2]
==>v[4]
==>v[6]
gremlin> g.V().filter(label().is('person')) //// (2)
==>v[1]
==>v[2]
==>v[4]
==>v[6]
gremlin> g.V().hasLabel('person') //// (3)
==>v[1]
==>v[2]
==>v[4]
==>v[6]
g.V().filter {it.get().label() == 'person'} //// (1)
g.V().filter(label().is('person')) //// (2)
g.V().hasLabel('person') //3
-
A filter that only allows the vertex to pass if it has the "person" label
-
The same operation, but using the traversal representation of
filter(). -
The more specific
has()-step is implemented as afilter()with respective predicate.

gremlin> g.V().hasLabel('person').sideEffect(System.out.&println) //// (1)
v[1]
==>v[1]
v[2]
==>v[2]
v[4]
==>v[4]
v[6]
==>v[6]
gremlin> g.V().sideEffect(outE().count().aggregate(local,"o")).
sideEffect(inE().count().aggregate(local,"i")).cap("o","i") //// (2)
==>[i:[0,0,1,1,1,3],o:[3,0,0,0,2,1]]
g.V().hasLabel('person').sideEffect(System.out.&println) //// (1)
g.V().sideEffect(outE().count().aggregate(local,"o")).
sideEffect(inE().count().aggregate(local,"i")).cap("o","i") //2
-
Whatever enters
sideEffect()is passed to the next step, but some intervening process can occur. -
Compute the out- and in-degree for each vertex. Both
sideEffect()are fed with the same vertex.

gremlin> g.V().branch {it.get().value('name')}.
option('marko', values('age')).
option(none, values('name')) //// (1)
==>29
==>vadas
==>lop
==>josh
==>ripple
==>peter
gremlin> g.V().branch(values('name')).
option('marko', values('age')).
option(none, values('name')) //// (2)
==>29
==>vadas
==>lop
==>josh
==>ripple
==>peter
gremlin> g.V().choose(has('name','marko'),
values('age'),
values('name')) //// (3)
==>29
==>vadas
==>lop
==>josh
==>ripple
==>peter
g.V().branch {it.get().value('name')}.
option('marko', values('age')).
option(none, values('name')) //// (1)
g.V().branch(values('name')).
option('marko', values('age')).
option(none, values('name')) //// (2)
g.V().choose(has('name','marko'),
values('age'),
values('name')) //3
-
If the vertex is "marko", get his age, else get the name of the vertex.
-
The same operation, but using the traversal representing of
branch(). -
The more specific boolean-based
choose()-step is implemented as abranch().
Terminal Steps
Typically, when a step is concatenated to a traversal a traversal is returned. In this way, a traversal is built up in a fluent, monadic fashion. However, some steps do not return a traversal, but instead, execute the traversal and return a result. These steps are known as terminal steps (terminal) and they are explained via the examples below.
gremlin> g.V().out('created').hasNext() //// (1)
==>true
gremlin> g.V().out('created').next() //// (2)
==>v[3]
gremlin> g.V().out('created').next(2) //// (3)
==>v[3]
==>v[5]
gremlin> g.V().out('nothing').tryNext() //// (4)
==>Optional.empty
gremlin> g.V().out('created').toList() //// (5)
==>v[3]
==>v[5]
==>v[3]
==>v[3]
gremlin> g.V().out('created').toSet() //// (6)
==>v[3]
==>v[5]
gremlin> g.V().out('created').toBulkSet() //// (7)
==>v[3]
==>v[3]
==>v[3]
==>v[5]
gremlin> results = ['blah',3]
==>blah
==>3
gremlin> g.V().out('created').fill(results) //// (8)
==>blah
==>3
==>v[3]
==>v[5]
==>v[3]
==>v[3]
gremlin> g.addV('person').iterate() //// (9)
g.V().out('created').hasNext() //// (1)
g.V().out('created').next() //// (2)
g.V().out('created').next(2) //// (3)
g.V().out('nothing').tryNext() //// (4)
g.V().out('created').toList() //// (5)
g.V().out('created').toSet() //// (6)
g.V().out('created').toBulkSet() //// (7)
results = ['blah',3]
g.V().out('created').fill(results) //// (8)
g.addV('person').iterate() //9
-
hasNext()determines whether there are available results (not supported ingremlin-javascript). -
next()will return the next result. -
next(n)will return the nextnresults in a list (not supported ingremlin-javascriptor Gremlin.NET). -
tryNext()will return anOptionaland thus, is a composite ofhasNext()/next()(only supported for JVM languages). -
toList()will return all results in a list. -
toSet()will return all results in a set and thus, duplicates removed (not supported ingremlin-javascript). -
toBulkSet()will return all results in a weighted set and thus, duplicates preserved via weighting (only supported for JVM languages). -
fill(collection)will put all results in the provided collection and return the collection when complete (only supported for JVM languages). -
iterate()does not exactly fit the definition of a terminal step in that it doesn’t return a result, but still returns a traversal - it does however behave as a terminal step in that it iterates the traversal and generates side effects without returning the actual result.
There is also the promise() terminator step, which can only be used with remote traversals to
Gremlin Server or RGPs. It starts a promise to execute a function
on the current Traversal that will be completed in the future.
Finally, explain()-step is also a terminal step and is described in its own section.
AddE Step
Reasoning is the process of making explicit what is implicit
in the data. What is explicit in a graph are the objects of the graph — i.e. vertices and edges. What is implicit
in the graph is the traversal. In other words, traversals expose meaning where the meaning is determined by the
traversal definition. For example, take the concept of a "co-developer." Two people are co-developers if they have
worked on the same project together. This concept can be represented as a traversal and thus, the concept of
"co-developers" can be derived. Moreover, what was once implicit can be made explicit via the addE()-step
(map/sideEffect).
gremlin> g.V(1).as('a').out('created').in('created').where(neq('a')).
addE('co-developer').from('a').property('year',2009) //// (1)
==>e[0][1-co-developer->4]
==>e[13][1-co-developer->6]
gremlin> g.V(3,4,5).aggregate('x').has('name','josh').as('a').
select('x').unfold().hasLabel('software').addE('createdBy').to('a') //// (2)
==>e[14][3-createdBy->4]
==>e[15][5-createdBy->4]
gremlin> g.V().as('a').out('created').addE('createdBy').to('a').property('acl','public') //// (3)
==>e[16][3-createdBy->1]
==>e[17][5-createdBy->4]
==>e[18][3-createdBy->4]
==>e[19][3-createdBy->6]
gremlin> g.V(1).as('a').out('knows').
addE('livesNear').from('a').property('year',2009).
inV().inE('livesNear').values('year') //// (4)
==>2009
==>2009
gremlin> g.V().match(
__.as('a').out('knows').as('b'),
__.as('a').out('created').as('c'),
__.as('b').out('created').as('c')).
addE('friendlyCollaborator').from('a').to('b').
property(id,23).property('project',select('c').values('name')) //// (5)
==>e[23][1-friendlyCollaborator->4]
gremlin> g.E(23).valueMap()
==>[project:lop]
gremlin> vMarko = g.V().has('name','marko').next()
==>v[1]
gremlin> vPeter = g.V().has('name','peter').next()
==>v[6]
gremlin> g.V(vMarko).addE('knows').to(vPeter) //// (6)
==>e[22][1-knows->6]
gremlin> g.addE('knows').from(vMarko).to(vPeter) //// (7)
==>e[24][1-knows->6]
g.V(1).as('a').out('created').in('created').where(neq('a')).
addE('co-developer').from('a').property('year',2009) //// (1)
g.V(3,4,5).aggregate('x').has('name','josh').as('a').
select('x').unfold().hasLabel('software').addE('createdBy').to('a') //// (2)
g.V().as('a').out('created').addE('createdBy').to('a').property('acl','public') //// (3)
g.V(1).as('a').out('knows').
addE('livesNear').from('a').property('year',2009).
inV().inE('livesNear').values('year') //// (4)
g.V().match(
__.as('a').out('knows').as('b'),
__.as('a').out('created').as('c'),
__.as('b').out('created').as('c')).
addE('friendlyCollaborator').from('a').to('b').
property(id,23).property('project',select('c').values('name')) //// (5)
g.E(23).valueMap()
vMarko = g.V().has('name','marko').next()
vPeter = g.V().has('name','peter').next()
g.V(vMarko).addE('knows').to(vPeter) //// (6)
g.addE('knows').from(vMarko).to(vPeter) //7
-
Add a co-developer edge with a year-property between marko and his collaborators.
-
Add incoming createdBy edges from the josh-vertex to the lop- and ripple-vertices.
-
Add an inverse createdBy edge for all created edges.
-
The newly created edge is a traversable object.
-
Two arbitrary bindings in a traversal can be joined
from()→to(), whereidcan be provided for graphs that supports user provided ids. -
Add an edge between marko and peter given the directed (detached) vertex references.
-
Add an edge between marko and peter given the directed (detached) vertex references.
Additional References
AddV Step
The addV()-step is used to add vertices to the graph (map/sideEffect). For every incoming object, a vertex is
created. Moreover, GraphTraversalSource maintains an addV() method.
gremlin> g.addV('person').property('name','stephen')
==>v[0]
gremlin> g.V().values('name')
==>stephen
==>marko
==>vadas
==>lop
==>josh
==>ripple
==>peter
gremlin> g.V().outE('knows').addV().property('name','nothing')
==>v[13]
==>v[15]
gremlin> g.V().has('name','nothing')
==>v[13]
==>v[15]
gremlin> g.V().has('name','nothing').bothE()
g.addV('person').property('name','stephen')
g.V().values('name')
g.V().outE('knows').addV().property('name','nothing')
g.V().has('name','nothing')
g.V().has('name','nothing').bothE()
Additional References
Aggregate Step
The aggregate()-step (sideEffect) is used to aggregate all the objects at a particular point of traversal into a
Collection. The step is uses Scope to help determine the aggregating behavior. For global scope this means that
the step will use eager evaluation in that no objects continue on
until all previous objects have been fully aggregated. The eager evaluation model is crucial in situations
where everything at a particular point is required for future computation. By default, when the overload of
aggregate() is called without a Scope, the default is global. An example is provided below.
gremlin> g.V(1).out('created') //// (1)
==>v[3]
gremlin> g.V(1).out('created').aggregate('x') //// (2)
==>v[3]
gremlin> g.V(1).out('created').aggregate(global, 'x') //// (3)
==>v[3]
gremlin> g.V(1).out('created').aggregate('x').in('created') //// (4)
==>v[1]
==>v[4]
==>v[6]
gremlin> g.V(1).out('created').aggregate('x').in('created').out('created') //// (5)
==>v[3]
==>v[5]
==>v[3]
==>v[3]
gremlin> g.V(1).out('created').aggregate('x').in('created').out('created').
where(without('x')).values('name') //// (6)
==>ripple
g.V(1).out('created') //// (1)
g.V(1).out('created').aggregate('x') //// (2)
g.V(1).out('created').aggregate(global, 'x') //// (3)
g.V(1).out('created').aggregate('x').in('created') //// (4)
g.V(1).out('created').aggregate('x').in('created').out('created') //// (5)
g.V(1).out('created').aggregate('x').in('created').out('created').
where(without('x')).values('name') //6
-
What has marko created?
-
Aggregate all his creations.
-
Identical to the previous line.
-
Who are marko’s collaborators?
-
What have marko’s collaborators created?
-
What have marko’s collaborators created that he hasn’t created?
In recommendation systems, the above pattern is used:
"What has userA liked? Who else has liked those things? What have they liked that userA hasn't already liked?"
Finally, aggregate()-step can be modulated via by()-projection.
gremlin> g.V().out('knows').aggregate('x').cap('x')
==>[v[2],v[4]]
gremlin> g.V().out('knows').aggregate('x').by('name').cap('x')
==>[vadas,josh]
gremlin> g.V().out('knows').aggregate('x').by('age').cap('x') //// (1)
==>[27,32]
g.V().out('knows').aggregate('x').cap('x')
g.V().out('knows').aggregate('x').by('name').cap('x')
g.V().out('knows').aggregate('x').by('age').cap('x') //1
-
The "age" property is not productive for all vertices and therefore those values are not included in the aggregation.
For local scope the aggregation will occur in a lazy fashion.
|
Note
|
Prior to 3.4.3, local aggregation (i.e. lazy) evaluation was handled by store()-step.
|
gremlin> g.V().aggregate(global, 'x').limit(1).cap('x')
==>[v[1],v[2],v[3],v[4],v[5],v[6]]
gremlin> g.V().aggregate(local, 'x').limit(1).cap('x')
==>[v[1]]
gremlin> g.withoutStrategies(EarlyLimitStrategy).V().aggregate(local,'x').limit(1).cap('x')
==>[v[1],v[2]]
g.V().aggregate(global, 'x').limit(1).cap('x')
g.V().aggregate(local, 'x').limit(1).cap('x')
g.withoutStrategies(EarlyLimitStrategy).V().aggregate(local,'x').limit(1).cap('x')
It is important to note that EarlyLimitStrategy introduced in 3.3.5 alters the behavior of aggregate(local).
Without that strategy (which is installed by default), there are two results in the aggregate() side-effect even
though the interval selection is for 1 object. Realize that when the second object is on its way to the range()
filter (i.e. [0..1]), it passes through aggregate() and thus, stored before filtered.
gremlin> g.E().aggregate(local,'x').by('weight').cap('x')
==>[0.5,1.0,1.0,0.4,0.4,0.2]
g.E().aggregate(local,'x').by('weight').cap('x')
Additional References
All Step
It is possible to filter list traversers using all()-step (filter). Every item in the list will be tested against
the supplied predicate and if all of the items pass then the traverser is passed along the stream, otherwise it is
filtered. Empty lists are passed along but null or non-iterable traversers are filtered out.
|
Python
|
The term |
gremlin> g.V().values('age').fold().all(gt(25)) //// (1)
==>[29,27,32,35]
g.V().values('age').fold().all(gt(25)) //1
-
Return the list of ages only if everyone’s age is greater than 25.
Additional References
And Step
The and()-step ensures that all provided traversals yield a result (filter). Please see or() for or-semantics.
|
Python
|
The term |
gremlin> g.V().and(
outE('knows'),
values('age').is(lt(30))).
values('name')
==>marko
g.V().and(
outE('knows'),
values('age').is(lt(30))).
values('name')
The and()-step can take an arbitrary number of traversals. All traversals must produce at least one output for the
original traverser to pass to the next step.
An infix notation can be used as well.
gremlin> g.V().where(outE('created').and().outE('knows')).values('name')
==>marko
g.V().where(outE('created').and().outE('knows')).values('name')
Additional References
Any Step
It is possible to filter list traversers using any()-step (filter). All items in the list will be tested against
the supplied predicate and if any of the items pass then the traverser is passed along the stream, otherwise it is
filtered. Empty lists, null traversers, and non-iterable traversers are filtered out as well.
|
Python
|
The term |
gremlin> g.V().values('age').fold().any(gt(25)) //// (1)
==>[29,27,32,35]
g.V().values('age').fold().any(gt(25)) //1
-
Return the list of ages if anyone’s age is greater than 25.
Additional References
As Step
The as()-step is not a real step, but a "step modulator" similar to by() and option().
With as(), it is possible to provide a label to the step that can later be accessed by steps and data structures
that make use of such labels — e.g., select(), match(), and path.
|
Groovy
|
The term |
|
Python
|
The term |
gremlin> g.V().as('a').out('created').as('b').select('a','b') //// (1)
==>[a:v[1],b:v[3]]
==>[a:v[4],b:v[5]]
==>[a:v[4],b:v[3]]
==>[a:v[6],b:v[3]]
gremlin> g.V().as('a').out('created').as('b').select('a','b').by('name') //// (2)
==>[a:marko,b:lop]
==>[a:josh,b:ripple]
==>[a:josh,b:lop]
==>[a:peter,b:lop]
g.V().as('a').out('created').as('b').select('a','b') //// (1)
g.V().as('a').out('created').as('b').select('a','b').by('name') //2
-
Select the objects labeled "a" and "b" from the path.
-
Select the objects labeled "a" and "b" from the path and, for each object, project its name value.
A step can have any number of labels associated with it. This is useful for referencing the same step multiple times in a future step.
gremlin> g.V().hasLabel('software').as('a','b','c').
select('a','b','c').
by('name').
by('lang').
by(__.in('created').values('name').fold())
==>[a:lop,b:java,c:[marko,josh,peter]]
==>[a:ripple,b:java,c:[josh]]
g.V().hasLabel('software').as('a','b','c').
select('a','b','c').
by('name').
by('lang').
by(__.in('created').values('name').fold())
Additional References
AsString Step
The asString()-step (map) returns the value of incoming traverser as strings. Any null value will cause an IllegalArgumentException.
gremlin> g.V().hasLabel('person').values('age').asString() //// (1)
==>29
==>27
==>32
==>35
gremlin> g.V().hasLabel('person').values('age').asString().concat(' years old') //// (2)
==>29 years old
==>27 years old
==>32 years old
==>35 years old
gremlin> g.V().hasLabel('person').values('age').fold().asString(local) //// (3)
==>[29,27,32,35]
g.V().hasLabel('person').values('age').asString() //// (1)
g.V().hasLabel('person').values('age').asString().concat(' years old') //// (2)
g.V().hasLabel('person').values('age').fold().asString(local) //3
-
Return ages as string.
-
Return ages as string and use concat to generate phrases.
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
AsBool Step
The asBool()-step (map) converts the incoming traverser to a boolean value. If the traverser is already a boolean value, it is passed as-is. Numbers evaluate to
true if non-zero, and to false if zero or NaN. Strings are only accepted when
equal to "true" or "false" (case-insensitive), otherwise an IllegalArgumentException is thrown.
All other types (including null) will throw an IllegalArgumentException.
gremlin> g.inject(1).asBool() //// (1)
==>true
gremlin> g.inject("false").asBool() //// (2)
==>false
g.inject(1).asBool() //// (1)
g.inject("false").asBool() //2
-
Convert number to boolean
-
Convert string to boolean
Additional References
AsDate Step
The asDate()-step (map) converts string or numeric input to Date.
For string input only ISO-8601 format is supported. For numbers, the value is considered as the number of the milliseconds since "the epoch" (January 1, 1970, 00:00:00 GMT). Date input is passed without changes.
If the incoming traverser is not a string, number, Date or OffsetDateTime then an IllegalArgumentException will be thrown.
gremlin> g.inject(1690934400000).asDate() //// (1)
==>2023-08-02T00:00Z
gremlin> g.inject("2023-08-02T00:00:00Z").asDate() //// (2)
==>2023-08-02T00:00Z
gremlin> g.inject(datetime("2023-08-24T00:00:00Z")).asDate() //// (3)
==>2023-08-24T00:00Z
g.inject(1690934400000).asDate() //// (1)
g.inject("2023-08-02T00:00:00Z").asDate() //// (2)
g.inject(datetime("2023-08-24T00:00:00Z")).asDate() //3
-
Convert number to Date
-
Convert ISO-8601 string to Date
-
Pass Date without modification
Additional References
AsNumber Step
The asNumber()-step (map) converts the incoming traverser to the nearest parsable type if no argument is provided,
or to the desired numerical type, based on the type token (GType) provided. If a type token entered isn’t a numerical type, an IllegalArgumentException will be thrown.
Numerical input will pass through unless a type is specified by the number token. ArithmeticException will be thrown
for any overflow during narrowing of types.
String inputs are parsed into numeric values. By default, the value will be parsed as an integer if it represents a
whole number, or as a double if it contains a decimal point. A NumberFormatException will be thrown if the string
cannot be parsed into a valid number format.
All other input types will result in IllegalArgumentException.
gremlin> g.inject(1234).asNumber() //// (1)
==>1234
gremlin> g.inject(1.76d).asNumber() //// (2)
==>1.76
gremlin> g.inject(1.76d).asNumber(GType.INT) //// (3)
==>1
g.inject(1234).asNumber() //// (1)
g.inject(1.76d).asNumber() //// (2)
g.inject(1.76d).asNumber(GType.INT) //3
-
An int will be passed through.
-
A double will be passed through.
-
A double is converted into an int.
|
Java
|
The enums values |
|
Groovy & Gremlin Console
|
The enums values |
|
JavaScript
|
The enums values |
Additional References
Barrier Step
The barrier()-step (barrier) turns the lazy traversal pipeline into a bulk-synchronous pipeline. This step is
useful in the following situations:
-
When everything prior to
barrier()needs to be executed before moving onto the steps after thebarrier()(i.e. ordering). -
When "stalling" the traversal may lead to a "bulking optimization" in traversals that repeatedly touch many of the same elements (i.e. optimizing).
gremlin> g.V().sideEffect{println "first: ${it}"}.sideEffect{println "second: ${it}"}.iterate()
first: v[1]
second: v[1]
first: v[2]
second: v[2]
first: v[3]
second: v[3]
first: v[4]
second: v[4]
first: v[5]
second: v[5]
first: v[6]
second: v[6]
gremlin> g.V().sideEffect{println "first: ${it}"}.barrier().sideEffect{println "second: ${it}"}.iterate()
first: v[1]
first: v[2]
first: v[3]
first: v[4]
first: v[5]
first: v[6]
second: v[1]
second: v[2]
second: v[3]
second: v[4]
second: v[5]
second: v[6]
g.V().sideEffect{println "first: ${it}"}.sideEffect{println "second: ${it}"}.iterate()
g.V().sideEffect{println "first: ${it}"}.barrier().sideEffect{println "second: ${it}"}.iterate()
The theory behind a "bulking optimization" is simple. If there are one million traversers at vertex 1, then there is
no need to calculate one million both()-computations. Instead, represent those one million traversers as a single
traverser with a Traverser.bulk() equal to one million and execute both() once. A bulking optimization example is
made more salient on a larger graph. Therefore, the example below leverages the Grateful Dead graph.
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> g = traversal().with(graph).withoutStrategies(LazyBarrierStrategy) //// (1)
==>graphtraversalsource[tinkergraph[vertices:808 edges:8049], standard]
gremlin> clockWithResult(1){g.V().both().both().both().count().next()} //// (2)
==>5240.185541
==>126653966
gremlin> clockWithResult(1){g.V().repeat(both()).times(3).count().next()} //// (3)
==>4903.6910419999995
==>126653966
gremlin> clockWithResult(1){g.V().both().barrier().both().barrier().both().barrier().count().next()} //// (4)
==>5.495875
==>126653966
graph = TinkerGraph.open()
g = traversal().with(graph)
g.io('data/grateful-dead.xml').read().iterate()
g = traversal().with(graph).withoutStrategies(LazyBarrierStrategy) //// (1)
clockWithResult(1){g.V().both().both().both().count().next()} //// (2)
clockWithResult(1){g.V().repeat(both()).times(3).count().next()} //// (3)
clockWithResult(1){g.V().both().barrier().both().barrier().both().barrier().count().next()} //4
-
Explicitly remove
LazyBarrierStrategywhich yields a bulking optimization. -
A non-bulking traversal where each traverser is processed.
-
Each traverser entering
repeat()has its recursion bulked. -
A bulking traversal where implicit traversers are not processed.
If barrier() is provided an integer argument, then the barrier will only hold n-number of unique traversers in its
barrier before draining the aggregated traversers to the next step. This is useful in the aforementioned bulking
optimization scenario with the added benefit of reducing the risk of an out-of-memory exception.
LazyBarrierStrategy inserts barrier()-steps into a traversal where appropriate in order to gain the
"bulking optimization."
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> g = traversal().with(graph) //// (1)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> clockWithResult(1){g.V().both().both().both().count().next()}
==>3.7994589999999997
==>126653966
gremlin> g.V().both().both().both().count().iterate().toString() //// (2)
==>[TinkerGraphStep(vertex,[]), VertexStep(BOTH,vertex), NoOpBarrierStep(2500), VertexStep(BOTH,vertex), NoOpBarrierStep(2500), VertexStep(BOTH,edge), CountGlobalStep, DiscardStep]
graph = TinkerGraph.open()
g = traversal().with(graph) //// (1)
g.io('data/grateful-dead.xml').read().iterate()
clockWithResult(1){g.V().both().both().both().count().next()}
g.V().both().both().both().count().iterate().toString() //2
-
LazyBarrierStrategyis a default strategy and thus, does not need to be explicitly activated. -
With
LazyBarrierStrategyactivated,barrier()-steps are automatically inserted where appropriate.
Additional References
Branch Step
The branch() step splits the traverser to all the child traversals provided to it. Please see the
General Steps section for more information, but also consider that branch() is the basis for more
robust steps like choose() and union().
Additional References
By Step
The by()-step is not an actual step, but instead is a "step-modulator" similar to as() and
option(). If a step is able to accept traversals, functions, comparators, etc. then by() is the
means by which they are added. The general pattern is step().by()…by(). Some steps can only accept one by()
while others can take an arbitrary amount.
gremlin> g.V().group().by(bothE().count()) //// (1)
==>[1:[v[2],v[5],v[6]],3:[v[1],v[3],v[4]]]
gremlin> g.V().group().by(bothE().count()).by('name') //// (2)
==>[1:[vadas,ripple,peter],3:[marko,lop,josh]]
gremlin> g.V().group().by(bothE().count()).by(count()) //// (3)
==>[1:3,3:3]
g.V().group().by(bothE().count()) //// (1)
g.V().group().by(bothE().count()).by('name') //// (2)
g.V().group().by(bothE().count()).by(count()) //3
-
by(outE().count())will group the elements by their edge count (traversal). -
by('name')will process the grouped elements by their name (element property projection). -
by(count())will count the number of elements in each group (traversal).
When a by() modulator does not produce a result, it is deemed "unproductive". An "unproductive" modulator will lead
to the filtering of the traverser it is currently working with. The filtering will manifest in various ways depending
on the step.
gremlin> g.V().sample(1).by('age') //// (1)
==>v[1]
g.V().sample(1).by('age') //1
-
The "age" property key is not present for all vertices, therefore
sample()will ignore (i.e. filter) such vertices for consideration in the sampling.
The following steps all support by()-modulation. Note that the semantics of such modulation should be understood
on a step-by-step level and thus, as discussed in their respective section of the documentation.
-
aggregate(): aggregate all objects into a set but only store theirby()-modulated values. -
cyclicPath(): filter if the traverser’s path is cyclic givenby()-modulation. -
dedup(): dedup on the results of aby()-modulation. -
format(): transform a traverser provided to the step by way of theby()modulator before it is processed by it. -
group(): create group keys and values according toby()-modulation. -
groupCount(): count those groups where the group keys are the result ofby()-modulation. -
math(): transform a traverser provided to the step by way of theby()modulator before it is processed by it. -
order(): order the objects by the results of aby()-modulation. -
path(): get the path of the traverser where each path element isby()-modulated. -
project(): project a map of results given variousby()-modulations off the current object. -
propertyMap(): transform the result of the values in the resultingMapusing theby()modulator. -
sack(): provides the transformation for a traverser to a value to be stored in the sack. -
sample(): sample using the value returned byby()-modulation. -
select(): select path elements and transform them viaby()-modulation. -
simplePath(): filter if the traverser’s path is simple givenby()-modulation. -
tree(): get a tree of traversers objects where the objects have beenby()-modulated. -
valueMap(): transform the result of the values in the resultingMapusing theby()modulator. -
where(): determine the predicate given the testing of the results ofby()-modulation.
Additional References
Call Step
The call() step allows for custom, provider-specific service calls either at the start of a traversal or mid-traversal.
This allows Graph providers to expose operations not natively built into the Gremlin language, such as full text search,
custom analytics, notification triggers, etc.
When called with no arguments, call() will produce a list of callable services available for the graph in use. This
no-argument version is equivalent to call('--list'). This "directory service" is also capable of producing more
verbose output describing all the services or an individual service:
gremlin> g.call() //// (1)
gremlin> g.call('--list') //// (1)
gremlin> g.call().with('verbose') //// (2)
gremlin> g.call().with('verbose').with('service', 'xyz-service') //// (3)
g.call() //// (1)
g.call('--list') //// (1)
g.call().with('verbose') //// (2)
g.call().with('verbose').with('service', 'xyz-service') //3
-
List available services by name
-
Produce a Map of detailed service information by name
-
Produce the detailed service information for the 'xyz-service'
The first argument to call() is always the name of the service call. Additionally, service calls can accept both
static and dynamically produced parameters. Static parameters can be passed as a Map to the call() as the second
argument. Individual static parameters can also be added using the .with() modulator. Dynamic parameters can be
passed as a Map-producing Traversal as the second argument (no static parameters) or third argument (static + dynamic
parameters). Additional individual dynamic parameters can be added using the .with() modulator.
g.call('xyz-service') //1
g.call('xyz-service', ['a':'b']) //2
g.call('xyz-service').with('a', 'b') //2
g.call('xyz-service', __.inject(['a':'b'])) //3
g.call('xyz-service').with('a', __.inject('b')) //3
g.call('xyz-service', ['a':'b'], __.inject(['c':'d'])) //4
-
Call the 'xyz-service' with no parameters
-
Examples of static parameters (constants known before execution)
-
Examples of dynamic parameters (these will be computed at execution time)
-
Example of static + dynamic parameters (these will be computed and merged into one set of parameters at execution time)
Additional References
GraphTraversalSource:
GraphTraversal:
Cap Step
The cap()-step (barrier) iterates the traversal up to itself and emits the sideEffect referenced by the provided
key. If multiple keys are provided, then a Map<String,Object> of sideEffects is emitted.
gremlin> g.V().groupCount('a').by(label).cap('a') //// (1)
==>[software:2,person:4]
gremlin> g.V().groupCount('a').by(label).groupCount('b').by(outE().count()).cap('a','b') //// (2)
==>[a:[software:2,person:4],b:[0:3,1:1,2:1,3:1]]
g.V().groupCount('a').by(label).cap('a') //// (1)
g.V().groupCount('a').by(label).groupCount('b').by(outE().count()).cap('a','b') //2
-
Group and count vertices by their label. Emit the side effect labeled 'a', which is the group count by label.
-
Same as statement 1, but also emit the side effect labeled 'b' which groups vertices by the number of out edges.
Additional References
Choose Step
The choose()-step (branch) routes the current traverser to a particular traversal branch option. With choose(),
it is possible to implement two different types of semantics: if-then-else (conditional branching) and switch
(value-based selection).
If-Then-Else
The if-the-else semantics of choose() evaluate a predicate traversal and route the traverser to either the "true"
branch or the "false" branch based on the result.
gremlin> g.V().hasLabel('person').
choose(values('age').is(lte(30)),
__.in(),
__.out()).values('name') //// (1)
==>marko
==>ripple
==>lop
==>lop
gremlin> g.V().hasLabel('person').
choose(outE('knows').count().is(gt(0)),
__.out('knows'),
__.identity()).values('name') //// (2)
==>vadas
==>josh
==>vadas
==>josh
==>peter
g.V().hasLabel('person').
choose(values('age').is(lte(30)),
__.in(),
__.out()).values('name') //// (1)
g.V().hasLabel('person').
choose(outE('knows').count().is(gt(0)),
__.out('knows'),
__.identity()).values('name') //2
-
If the person’s age is less than or equal to 30, then traverse to incoming vertices, else traverse to outgoing vertices.
-
If the person has outgoing "knows" edges, then traverse to those known vertices, else return the person vertex itself.
If the "false"-branch is not provided, then simple if-then-semantics are implemented, where traversers that don’t match the condition are passed through unchanged.
gremlin> g.V().choose(hasLabel('person'), out('created')).values('name') //// (1)
==>lop
==>lop
==>ripple
==>lop
==>ripple
==>lop
gremlin> g.V().choose(hasLabel('person'), out('created'), identity()).values('name') //// (2)
==>lop
==>lop
==>ripple
==>lop
==>ripple
==>lop
g.V().choose(hasLabel('person'), out('created')).values('name') //// (1)
g.V().choose(hasLabel('person'), out('created'), identity()).values('name') //2
-
If the vertex is a person, emit the vertices they created, else emit the vertex.
-
if-the-else with an
identity()on the false-branch is equivalent to if-then with no false-branch.
Switch
The switch semantics of choose() use the result of a traversal as a key to select from multiple traversal options.
This allows for more complex branching logic beyond simple true/false conditions.
gremlin> g.V().hasLabel('person').
choose(values('name')).
option('marko', values('age')).
option('josh', values('name')).
option('vadas', elementMap()).
option('peter', label()) //// (1)
==>29
==>[id:2,label:person,name:vadas,age:27]
==>josh
==>person
gremlin> g.V().hasLabel('person').
choose(values('age')).
option(27, __.in().values('name')).
option(32, __.out().values('name')) //// (2)
==>v[1]
==>marko
==>ripple
==>lop
==>v[6]
g.V().hasLabel('person').
choose(values('name')).
option('marko', values('age')).
option('josh', values('name')).
option('vadas', elementMap()).
option('peter', label()) //// (1)
g.V().hasLabel('person').
choose(values('age')).
option(27, __.in().values('name')).
option(32, __.out().values('name')) //2
-
Use the person’s name to select which property or operation to return.
-
Use the person’s age value to select which traversal to apply, noting that traversers matching no age values simply pass through.
The choose()-step can use predicates with options to match ranges of values or other conditions.
gremlin> g.V().hasLabel('person').
choose(values('age')).
option(P.between(26, 30), constant('younger')).
option(P.gt(30), constant('older')).
option(Pick.none, constant('unknown')) //// (1)
==>younger
==>younger
==>older
==>older
g.V().hasLabel('person').
choose(values('age')).
option(P.between(26, 30), constant('younger')).
option(P.gt(30), constant('older')).
option(Pick.none, constant('unknown')) //1
-
If the person’s age is between 26 and 30, classify them as 'younger', if greater than 30, classify as 'older', otherwise 'unknown'.
The token T.label can be used as shorthand for __.label() when selecting options based on element labels.
gremlin> g.V().choose(T.label).
option('person', out('created')).
option('software', in('created')).
values('name') //// (1)
==>lop
==>marko
==>josh
==>peter
==>ripple
==>lop
==>josh
==>lop
g.V().choose(T.label).
option('person', out('created')).
option('software', in('created')).
values('name') //1
-
For person vertices, traverse to the software they created; for software vertices, traverse to the people who created them.
The Pick enum was introduced in an example earlier to handle non-matching scenarios. The following Pick options may
be used with choose():
-
Pick.none- Matches when no other options match -
Pick.unproductive- Matches when the choice inchoose()produces no results
gremlin> g.V().choose(values('age')).
option(P.between(26, 30), values('name')).
option(Pick.none, values('name')).
option(Pick.unproductive, label()) //// (1)
==>marko
==>vadas
==>software
==>josh
==>software
==>peter
gremlin> g.V().hasLabel('person').
choose(out('knows').count()).
option(0, constant('noFriends')).
option(Pick.none, constant('hasFriends')) //// (2)
==>hasFriends
==>noFriends
==>noFriends
==>noFriends
gremlin> g.V().choose(values('age')).
option(27, __.in().values('name')).
option(32, __.out().values('name')).
option(Pick.unproductive, discard()).
option(Pick.none, discard()) //// (3)
==>marko
==>ripple
==>lop
g.V().choose(values('age')).
option(P.between(26, 30), values('name')).
option(Pick.none, values('name')).
option(Pick.unproductive, label()) //// (1)
g.V().hasLabel('person').
choose(out('knows').count()).
option(0, constant('noFriends')).
option(Pick.none, constant('hasFriends')) //// (2)
g.V().choose(values('age')).
option(27, __.in().values('name')).
option(32, __.out().values('name')).
option(Pick.unproductive, discard()).
option(Pick.none, discard()) //3
-
For vertices with age between 26-30, return the name. For vertices with age outside that range, return the name. For vertices without an age property, return the label.
-
For people with no outgoing "knows" edges, return 'noFriends', otherwise return 'hasFriends'.
-
Use
none()step in combination withPick.noneandPick.unproductiveto filter unproductive traversals and unmatched values.
|
Important
|
It is important to think of choose() as a branching step and not a filter. The if-then semantics can
intuitively lead to thinking the latter, where no match would mean to remove the traverser from the stream. As shown in
the examples, this is not what happens.
|
The choose()-step can be used within a map() step to apply the branching logic to each element in a collection.
gremlin> g.V().hasLabel('person').
map(choose(values('age')).
option(P.between(26, 30), values('name').fold()).
option(Pick.none, values('name').fold())) //// (1)
==>[marko]
==>[vadas]
==>[josh]
==>[peter]
g.V().hasLabel('person').
map(choose(values('age')).
option(P.between(26, 30), values('name').fold()).
option(Pick.none, values('name').fold())) //1
-
For each person, create a list containing their name, using the same traversal regardless of age.
Additional References
Coalesce Step
The coalesce()-step evaluates the provided traversals in order and returns the first traversal that emits at
least one element.
gremlin> g.V(1).coalesce(outE('knows'), outE('created')).inV().path().by('name').by(label)
==>[marko,knows,vadas]
==>[marko,knows,josh]
gremlin> g.V(1).coalesce(outE('created'), outE('knows')).inV().path().by('name').by(label)
==>[marko,created,lop]
gremlin> g.V(1).property('nickname', 'okram')
==>v[1]
gremlin> g.V().hasLabel('person').coalesce(values('nickname'), values('name'))
==>okram
==>vadas
==>josh
==>peter
g.V(1).coalesce(outE('knows'), outE('created')).inV().path().by('name').by(label)
g.V(1).coalesce(outE('created'), outE('knows')).inV().path().by('name').by(label)
g.V(1).property('nickname', 'okram')
g.V().hasLabel('person').coalesce(values('nickname'), values('name'))
Additional References
Coin Step
To randomly filter out a traverser, use the coin()-step (filter). The provided double argument biases the "coin toss."
gremlin> g.V().coin(0.5)
==>v[2]
==>v[3]
==>v[5]
==>v[6]
gremlin> g.V().coin(0.0)
gremlin> g.V().coin(1.0)
==>v[1]
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
g.V().coin(0.5)
g.V().coin(0.0)
g.V().coin(1.0)
Additional References
Combine Step
The combine()-step (map) combines the elements of the incoming list traverser and the provided list argument into
one list. This is also known as appending or concatenating. This step only expects list data (array or Iterable) and
will throw an IllegalArgumentException if any other type is encountered (including null). This differs from the
merge()-step in that it allows duplicates to exist.
gremlin> g.V().values("name").fold().combine(["james","jen","marko","vadas"])
==>[marko,vadas,lop,josh,ripple,peter,james,jen,marko,vadas]
gremlin> g.V().values("name").fold().combine(__.constant("stephen").fold())
==>[marko,vadas,lop,josh,ripple,peter,stephen]
g.V().values("name").fold().combine(["james","jen","marko","vadas"])
g.V().values("name").fold().combine(__.constant("stephen").fold())
Additional References
Concat Step
The concat()-step (map) concatenates one or more String values together to the incoming String traverser. This step
can take either String varargs or Traversal varargs.
Any null String values will be skipped when concatenated with non-null String values. If two null value are
concatenated, the null value will be propagated and returned.
If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.addV(constant('prefix_').concat(__.V(1).label())).property(id, 10) //// (1)
==>v[10]
gremlin> g.V(10).label()
==>prefix_person
gremlin> g.V().hasLabel('person').values('name').as('a').
constant('Mr.').concat(__.select('a')) //// (2)
==>Mr.marko
==>Mr.vadas
==>Mr.josh
==>Mr.peter
gremlin> g.V().hasLabel('software').as('a').values('name').
concat(' uses ').
concat(select('a').values('lang')) //// (3)
==>lop uses java
==>ripple uses java
gremlin> g.V(1).outE().as('a').V(1).values('name').
concat(' ').
concat(select('a').label()).
concat(' ').
concat(select("a").inV().values('name')) //// (4)
==>marko created lop
==>marko knows vadas
==>marko knows josh
gremlin> g.V(1).outE().as('a').V(1).values('name').
concat(constant(' '),
select("a").label(),
constant(' '),
select('a').inV().values('name')) //// (5)
==>marko created lop
==>marko knows vadas
==>marko knows josh
gremlin> g.inject('hello', 'hi').concat(__.V().values('name')) //// (6)
==>hellomarko
==>himarko
gremlin> g.inject('This').concat(' ').concat('is a ', 'gremlin.') //// (7)
==>This is a gremlin.
g.addV(constant('prefix_').concat(__.V(1).label())).property(id, 10) //// (1)
g.V(10).label()
g.V().hasLabel('person').values('name').as('a').
constant('Mr.').concat(__.select('a')) //// (2)
g.V().hasLabel('software').as('a').values('name').
concat(' uses ').
concat(select('a').values('lang')) //// (3)
g.V(1).outE().as('a').V(1).values('name').
concat(' ').
concat(select('a').label()).
concat(' ').
concat(select("a").inV().values('name')) //// (4)
g.V(1).outE().as('a').V(1).values('name').
concat(constant(' '),
select("a").label(),
constant(' '),
select('a').inV().values('name')) //// (5)
g.inject('hello', 'hi').concat(__.V().values('name')) //// (6)
g.inject('This').concat(' ').concat('is a ', 'gremlin.') //7
-
Add a new vertex with id 10 which should be labeled like an existing vertex but with some prefix attached
-
Attach the prefix "Mr." to all the names using the
constant()-step -
Generate a string of software names and the language they use
-
Generate a string description for each of marko’s outgoing edges
-
Alternative way to generate the string description by using traversal varargs. Use the
constant()step to add desired strings between arguments. -
The
concat()step will append the first result from the child traversal to the incoming traverser -
A generic use of
concat()to join strings together
Additional References
Conjoin Step
The conjoin()-step (map) joins together the elements in the incoming list traverser together with the provided argument
as a delimiter. The resulting String is added to the Traversal Stream. This step only expects list data (array or
Iterable) in the incoming traverser and will throw an IllegalArgumentException if any other type is encountered
(including null). Null values are skipped and not included in the result.
gremlin> g.V().values("name").fold().conjoin("+")
==>marko+vadas+lop+josh+ripple+peter
g.V().values("name").fold().conjoin("+")
Additional References
ConnectedComponent Step
The connectedComponent() step performs a computation to identify Connected Component
instances in a graph. When this step completes, the vertices will be labelled with a component identifier to denote
the component to which they are associated.
|
Important
|
The connectedComponent()-step is a VertexComputing-step and as such, can only be used against a graph
that supports GraphComputer (OLAP).
|
gremlin> g = traversal().with(graph).withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().
connectedComponent().
with(ConnectedComponent.propertyName, 'component').
project('name','component').
by('name').
by('component')
==>[name:lop,component:1]
==>[name:marko,component:1]
==>[name:peter,component:1]
==>[name:ripple,component:1]
==>[name:josh,component:1]
==>[name:vadas,component:1]
gremlin> g.V().hasLabel('person').
connectedComponent().
with(ConnectedComponent.propertyName, 'component').
with(ConnectedComponent.edges, outE('knows')).
project('name','component').
by('name').
by('component')
==>[name:josh,component:1]
==>[name:vadas,component:1]
==>[name:marko,component:1]
==>[name:peter,component:6]
g = traversal().with(graph).withComputer()
g.V().
connectedComponent().
with(ConnectedComponent.propertyName, 'component').
project('name','component').
by('name').
by('component')
g.V().hasLabel('person').
connectedComponent().
with(ConnectedComponent.propertyName, 'component').
with(ConnectedComponent.edges, outE('knows')).
project('name','component').
by('name').
by('component')
Note the use of the with() modulating step which provides configuration options to the algorithm. It takes
configuration keys from the ConnectedComponent class and is automatically imported to the Gremlin Console.
Additional References
Constant Step
To specify a constant value for a traverser, use the constant()-step (map). This is often useful with conditional
steps like choose()-step or coalesce()-step.
gremlin> g.V().choose(hasLabel('person'),
values('name'),
constant('inhuman')) //// (1)
==>marko
==>vadas
==>inhuman
==>josh
==>inhuman
==>peter
gremlin> g.V().coalesce(
hasLabel('person').values('name'),
constant('inhuman')) //// (2)
==>marko
==>vadas
==>inhuman
==>josh
==>inhuman
==>peter
g.V().choose(hasLabel('person'),
values('name'),
constant('inhuman')) //// (1)
g.V().coalesce(
hasLabel('person').values('name'),
constant('inhuman')) //2
-
Show the names of people, but show "inhuman" for other vertices.
-
Same as statement 1 (unless there is a person vertex with no name).
Additional References
Count Step
The count()-step (map) counts the total number of represented traversers in the streams (i.e. the bulk count).
gremlin> g.V().count()
==>6
gremlin> g.V().hasLabel('person').count()
==>4
gremlin> g.V().hasLabel('person').outE('created').count().path() //// (1)
==>[4]
gremlin> g.V().hasLabel('person').outE('created').count().map {it.get() * 10}.path() //// (2)
==>[4,40]
g.V().count()
g.V().hasLabel('person').count()
g.V().hasLabel('person').outE('created').count().path() //// (1)
g.V().hasLabel('person').outE('created').count().map {it.get() * 10}.path() //2
-
count()-step is a reducing barrier step meaning that all of the previous traversers are folded into a new traverser. -
The path of the traverser emanating from
count()starts atcount().
|
Important
|
count(local) counts the current, local object (not the objects in the traversal stream). This works for
Collection- and Map-type objects. For any other object, a count of 1 is returned.
|
Additional References
CyclicPath Step
Each traverser maintains its history through the traversal over the graph — i.e. its path.
If it is important that the traverser repeat its course, then cyclic()-path should be used (filter). The step
analyzes the path of the traverser thus far and if there are any repeats, the traverser is filtered out over the
traversal computation. If non-cyclic behavior is desired, see simplePath().
gremlin> g.V(1).both().both()
==>v[1]
==>v[4]
==>v[6]
==>v[1]
==>v[5]
==>v[3]
==>v[1]
gremlin> g.V(1).both().both().cyclicPath()
==>v[1]
==>v[1]
==>v[1]
gremlin> g.V(1).both().both().cyclicPath().path()
==>[v[1],v[3],v[1]]
==>[v[1],v[2],v[1]]
==>[v[1],v[4],v[1]]
gremlin> g.V(1).both().both().cyclicPath().by('age').path() //// (1)
==>[v[1],v[2],v[1]]
==>[v[1],v[4],v[1]]
gremlin> g.V(1).as('a').out('created').as('b').
in('created').as('c').
cyclicPath().
path()
==>[v[1],v[3],v[1]]
gremlin> g.V(1).as('a').out('created').as('b').
in('created').as('c').
cyclicPath().from('a').to('b').
path()
g.V(1).both().both()
g.V(1).both().both().cyclicPath()
g.V(1).both().both().cyclicPath().path()
g.V(1).both().both().cyclicPath().by('age').path() //// (1)
g.V(1).as('a').out('created').as('b').
in('created').as('c').
cyclicPath().
path()
g.V(1).as('a').out('created').as('b').
in('created').as('c').
cyclicPath().from('a').to('b').
path()
-
The "age" property is not productive for all vertices and therefore those traversers are filtered.
Additional References
DateAdd Step
The dateAdd()-step (map) returns the value with the addition of the value number of units as specified by the DateToken.
If the incoming traverser is not a Date or OffsetDateTime, then an IllegalArgumentException will be thrown.
gremlin> g.inject("2023-08-02T00:00:00Z").asDate().dateAdd(DT.day, 7) //// (1)
==>2023-08-09T00:00Z
gremlin> g.inject(["2023-08-02T00:00:00Z", "2023-08-03T00:00:00Z"]).unfold().asDate().dateAdd(DT.minute, 1) //// (2)
==>2023-08-02T00:01Z
==>2023-08-03T00:01Z
g.inject("2023-08-02T00:00:00Z").asDate().dateAdd(DT.day, 7) //// (1)
g.inject(["2023-08-02T00:00:00Z", "2023-08-03T00:00:00Z"]).unfold().asDate().dateAdd(DT.minute, 1) //2
-
Add 7 days to Date
-
Add 1 minute to incoming dates
Additional References
DateDiff Step
The dateDiff()-step (map) returns the difference between two Dates in epoch time.
If the incoming traverser is not a Date or OffsetDateTime, then an IllegalArgumentException will be thrown.
gremlin> g.inject("2023-08-02T00:00:00Z").asDate().dateDiff(constant("2023-08-03T00:00:00Z").asDate()) //// (1)
==>-86400
g.inject("2023-08-02T00:00:00Z").asDate().dateDiff(constant("2023-08-03T00:00:00Z").asDate()) //1
-
Find difference between two dates
Additional References
Dedup Step
With dedup()-step (filter), repeatedly seen objects are removed from the traversal stream. Note that if a
traverser’s bulk is greater than 1, then it is set to 1 before being emitted.
gremlin> g.V().values('lang')
==>java
==>java
gremlin> g.V().values('lang').dedup()
==>java
gremlin> g.V(1).repeat(bothE('created').dedup().otherV()).emit().path() //// (1)
==>[v[1],e[9][1-created->3],v[3]]
==>[v[1],e[9][1-created->3],v[3],e[11][4-created->3],v[4]]
==>[v[1],e[9][1-created->3],v[3],e[12][6-created->3],v[6]]
==>[v[1],e[9][1-created->3],v[3],e[11][4-created->3],v[4],e[10][4-created->5],v[5]]
gremlin> g.V().bothE().properties().dedup() //// (2)
==>p[weight->0.4]
==>p[weight->0.5]
==>p[weight->1.0]
==>p[weight->0.2]
g.V().values('lang')
g.V().values('lang').dedup()
g.V(1).repeat(bothE('created').dedup().otherV()).emit().path() //// (1)
g.V().bothE().properties().dedup() //2
-
Traverse all
creatededges, but don’t touch any edge twice. -
Note that
Propertyinstances will compare on key and value, whereas aVertexPropertywill also include its element as it is a first-class citizen.
If a by-step modulation is provided to dedup(), then the object is processed accordingly prior to determining if it
has been seen or not.
gremlin> g.V().elementMap('name')
==>[id:1,label:person,name:marko]
==>[id:2,label:person,name:vadas]
==>[id:3,label:software,name:lop]
==>[id:4,label:person,name:josh]
==>[id:5,label:software,name:ripple]
==>[id:6,label:person,name:peter]
gremlin> g.V().dedup().by(label).values('name')
==>marko
==>lop
g.V().elementMap('name')
g.V().dedup().by(label).values('name')
If dedup() is provided an array of strings, then it will ensure that the de-duplication is not with respect to the
current traverser object, but to the path history of the traverser.
gremlin> g.V().as('a').out('created').as('b').in('created').as('c').select('a','b','c')
==>[a:v[1],b:v[3],c:v[1]]
==>[a:v[1],b:v[3],c:v[4]]
==>[a:v[1],b:v[3],c:v[6]]
==>[a:v[4],b:v[5],c:v[4]]
==>[a:v[4],b:v[3],c:v[1]]
==>[a:v[4],b:v[3],c:v[4]]
==>[a:v[4],b:v[3],c:v[6]]
==>[a:v[6],b:v[3],c:v[1]]
==>[a:v[6],b:v[3],c:v[4]]
==>[a:v[6],b:v[3],c:v[6]]
gremlin> g.V().as('a').out('created').as('b').in('created').as('c').dedup('a','b').select('a','b','c') //// (1)
==>[a:v[1],b:v[3],c:v[1]]
==>[a:v[4],b:v[5],c:v[4]]
==>[a:v[4],b:v[3],c:v[1]]
==>[a:v[6],b:v[3],c:v[1]]
gremlin> g.V().as('a').both().as('b').both().as('c').
dedup('a','b').by('age'). //// (2)
select('a','b','c').by('name')
==>[a:marko,b:vadas,c:marko]
==>[a:marko,b:josh,c:ripple]
==>[a:vadas,b:marko,c:lop]
==>[a:josh,b:marko,c:lop]
g.V().as('a').out('created').as('b').in('created').as('c').select('a','b','c')
g.V().as('a').out('created').as('b').in('created').as('c').dedup('a','b').select('a','b','c') //// (1)
g.V().as('a').both().as('b').both().as('c').
dedup('a','b').by('age'). //// (2)
select('a','b','c').by('name')
-
If the current
aandbcombination has been seen previously, then filter the traverser. -
The "age" property is not productive for all vertices and therefore those values are filtered.
The dedup() step can work on many different types of objects. One object in particular can need a bit of explanation.
If you use dedup() on a Path object there is a chance that you may get some unexpected results. Consider the
following example which forcibly generates duplicate path results in the first traversal and in the second applies
dedup() to remove them:
gremlin> g.V().union(out().path(), out().path())
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[6],v[3]]
==>[v[6],v[3]]
gremlin> g.V().union(out().path(), out().path()).dedup()
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[6],v[3]]
g.V().union(out().path(), out().path())
g.V().union(out().path(), out().path()).dedup()
The dedup() step checks the equality of the paths by examining the equality of the objects on the Path (in this case
vertices), but also on any path labels. In the prior example, there weren’t any path labels so dedup() behaved as
expected. In the next example, note the difference in the results if a label is added for one Path but not the other:
gremlin> g.V().union(out().as('x').path(), out().path())
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[6],v[3]]
==>[v[6],v[3]]
gremlin> g.V().union(out().as('x').path(), out().path()).dedup()
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[6],v[3]]
==>[v[6],v[3]]
g.V().union(out().as('x').path(), out().path())
g.V().union(out().as('x').path(), out().path()).dedup()
The prior example shows how dedup() does not have the same effect when a path label is in place. In this contrived
example the answer is simple: remove the as('x'). If in the real world, it is not possible to remove the label, the
workaround is to deconstruct the Path into a List to drop the label. In this way, dedup() is just comparing List
objects and the objects in the Path.
gremlin> g.V().union(out().as('x').path(), out().path()).map(unfold().fold()).dedup()
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[4]]
==>[v[4],v[5]]
==>[v[4],v[3]]
==>[v[6],v[3]]
g.V().union(out().as('x').path(), out().path()).map(unfold().fold()).dedup()
Additional References
Difference Step
The difference()-step (map) calculates the difference between the incoming list traverser and the provided list
argument. More specifically, this provides the set operation A-B where A is the traverser and B is the argument. This
step only expects list data (array or Iterable) and will throw an IllegalArgumentException if any other type is
encountered (including null).
gremlin> g.V().values("name").fold().difference(["lop","ripple"])
==>[peter,vadas,josh,marko]
gremlin> g.V().values("name").fold().difference(__.V().limit(2).values("name").fold())
==>[ripple,peter,josh,lop]
g.V().values("name").fold().difference(["lop","ripple"])
g.V().values("name").fold().difference(__.V().limit(2).values("name").fold())
Additional References
Discard Step
The discard()-step (filter) filters all objects from a traversal stream. It is helpful with Branch Step types
of steps where a particular branch of code should "throw away" traversers. In the following example, traversers that
don’t match are filtered out of the traversal stream.
gremlin> g.V().choose(T.label).
option("person", __.out("knows").values("name")).
option("bleep", __.out("created").values("name")).
option(none, discard())
==>vadas
==>josh
g.V().choose(T.label).
option("person", __.out("knows").values("name")).
option("bleep", __.out("created").values("name")).
option(none, discard())
It is also useful for traversals that are executed remotely where returning results is not useful and the traversal is
only meant to generate side-effects. Choosing not to return results saves in serialization and network costs as the
objects are filtered on the remote end and not returned to the client side. Typically, this step does not need to be
used directly and is quietly used by the iterate() terminal step which appends discard() to the traversal before
actually cycling through results.
Additional References
Disjunct Step
The disjunct()-step (map) calculates the disjunct set between the incoming list traverser and the provided list
argument. This step only expects list data (array or Iterable) and will throw an IllegalArgumentException if any other
type is encountered (including null).
gremlin> g.V().values("name").fold().disjunct(["lop","peter","sam"]) //// (1)
==>[ripple,vadas,josh,sam,marko]
gremlin> g.V().values("name").fold().disjunct(__.V().limit(3).values("name").fold())
==>[ripple,peter,josh]
g.V().values("name").fold().disjunct(["lop","peter","sam"]) //// (1)
g.V().values("name").fold().disjunct(__.V().limit(3).values("name").fold())
-
Find the unique names between two group of names
Additional References
Drop Step
The drop()-step (filter/sideEffect) is used to remove element and properties from the graph (i.e. remove). It
is a filter step because the traversal yields no outgoing objects.
gremlin> g.V().outE().drop()
gremlin> g.E()
gremlin> g.V().properties('name').drop()
gremlin> g.V().elementMap()
==>[id:1,label:person,age:29]
==>[id:2,label:person,age:27]
==>[id:3,label:software,lang:java]
==>[id:4,label:person,age:32]
==>[id:5,label:software,lang:java]
==>[id:6,label:person,age:35]
gremlin> g.V().drop()
gremlin> g.V()
g.V().outE().drop()
g.E()
g.V().properties('name').drop()
g.V().elementMap()
g.V().drop()
g.V()
Additional References
E Step
The E()-step is meant to read edges from the graph and is usually used to start a GraphTraversal, but can also
be used mid-traversal.
gremlin> g.E(11) //// (1)
==>e[11][4-created->3]
gremlin> g.E().hasLabel('knows').has('weight', gt(0.75))
==>e[8][1-knows->4]
gremlin> g.inject(1).coalesce(E().hasLabel("knows"), addE("knows").from(V().has("name","josh")).to(V().has("name","vadas"))) //// (2)
==>e[7][1-knows->2]
==>e[8][1-knows->4]
g.E(11) //// (1)
g.E().hasLabel('knows').has('weight', gt(0.75))
g.inject(1).coalesce(E().hasLabel("knows"), addE("knows").from(V().has("name","josh")).to(V().has("name","vadas"))) //2
-
Find the edge by its unique identifier (i.e.
T.id) - not all graphs will use a numeric value for their identifier. -
Get edges with label
knows, if there is none then add new one betweenjoshandvadas.
Additional References
Element Step
The element() step is a no-argument step that traverses from a Property to the Element that owns it.
gremlin> g.V().properties().element() //// (1)
==>v[1]
==>v[1]
==>v[1]
==>v[1]
==>v[1]
==>v[7]
==>v[7]
==>v[7]
==>v[7]
==>v[8]
==>v[8]
==>v[8]
==>v[8]
==>v[8]
==>v[9]
==>v[9]
==>v[9]
==>v[9]
==>v[10]
==>v[11]
gremlin> g.E().properties().element() //// (2)
==>e[13][1-develops->10]
==>e[14][1-develops->11]
==>e[15][1-uses->10]
==>e[16][1-uses->11]
==>e[17][7-develops->10]
==>e[18][7-develops->11]
==>e[19][7-uses->10]
==>e[20][7-uses->11]
==>e[21][8-develops->10]
==>e[22][8-uses->10]
==>e[23][8-uses->11]
==>e[24][9-uses->10]
==>e[25][9-uses->11]
gremlin> g.V().properties().properties().element() //// (3)
==>vp[location->san diego]
==>vp[location->san diego]
==>vp[location->santa cruz]
==>vp[location->santa cruz]
==>vp[location->brussels]
==>vp[location->brussels]
==>vp[location->santa fe]
==>vp[location->centreville]
==>vp[location->centreville]
==>vp[location->dulles]
==>vp[location->dulles]
==>vp[location->purcellville]
==>vp[location->bremen]
==>vp[location->bremen]
==>vp[location->baltimore]
==>vp[location->baltimore]
==>vp[location->oakland]
==>vp[location->oakland]
==>vp[location->seattle]
==>vp[location->spremberg]
==>vp[location->spremberg]
==>vp[location->kaiserslautern]
==>vp[location->kaiserslautern]
==>vp[location->aachen]
g.V().properties().element() //// (1)
g.E().properties().element() //// (2)
g.V().properties().properties().element() //3
-
Traverse from
VertexPropertytoVertex -
Traverse from
Property(edge property) toEdge -
Traverse from
Property(meta property) toVertexProperty
Additional References
ElementMap Step
The elementMap()-step yields a Map representation of the structure of an element.
gremlin> g.V().elementMap()
==>[id:1,label:person,name:marko,age:29]
==>[id:2,label:person,name:vadas,age:27]
==>[id:3,label:software,name:lop,lang:java]
==>[id:4,label:person,name:josh,age:32]
==>[id:5,label:software,name:ripple,lang:java]
==>[id:6,label:person,name:peter,age:35]
gremlin> g.V().elementMap('age')
==>[id:1,label:person,age:29]
==>[id:2,label:person,age:27]
==>[id:3,label:software]
==>[id:4,label:person,age:32]
==>[id:5,label:software]
==>[id:6,label:person,age:35]
gremlin> g.V().elementMap('age','blah')
==>[id:1,label:person,age:29]
==>[id:2,label:person,age:27]
==>[id:3,label:software]
==>[id:4,label:person,age:32]
==>[id:5,label:software]
==>[id:6,label:person,age:35]
gremlin> g.E().elementMap()
==>[id:7,label:knows,IN:[id:2,label:person],OUT:[id:1,label:person],weight:0.5]
==>[id:8,label:knows,IN:[id:4,label:person],OUT:[id:1,label:person],weight:1.0]
==>[id:9,label:created,IN:[id:3,label:software],OUT:[id:1,label:person],weight:0.4]
==>[id:10,label:created,IN:[id:5,label:software],OUT:[id:4,label:person],weight:1.0]
==>[id:11,label:created,IN:[id:3,label:software],OUT:[id:4,label:person],weight:0.4]
==>[id:12,label:created,IN:[id:3,label:software],OUT:[id:6,label:person],weight:0.2]
g.V().elementMap()
g.V().elementMap('age')
g.V().elementMap('age','blah')
g.E().elementMap()
It is important to note that the map of a vertex assumes that cardinality for each key is single and if it is list
then only the first item encountered will be returned. As single is the more common cardinality for properties this
assumption should serve the greatest number of use cases.
gremlin> g.V().elementMap()
==>[id:1,label:person,name:marko,location:santa fe]
==>[id:7,label:person,name:stephen,location:purcellville]
==>[id:8,label:person,name:matthias,location:seattle]
==>[id:9,label:person,name:daniel,location:aachen]
==>[id:10,label:software,name:gremlin]
==>[id:11,label:software,name:tinkergraph]
gremlin> g.V().has('name','marko').properties('location')
==>vp[location->san diego]
==>vp[location->santa cruz]
==>vp[location->brussels]
==>vp[location->santa fe]
gremlin> g.V().has('name','marko').properties('location').elementMap()
==>[id:6,key:location,value:san diego,startTime:1997,endTime:2001]
==>[id:7,key:location,value:santa cruz,startTime:2001,endTime:2004]
==>[id:8,key:location,value:brussels,startTime:2004,endTime:2005]
==>[id:9,key:location,value:santa fe,startTime:2005]
g.V().elementMap()
g.V().has('name','marko').properties('location')
g.V().has('name','marko').properties('location').elementMap()
|
Important
|
The elementMap()-step does not return the vertex labels for incident vertices when using GraphComputer
as the id is the only available data to the star graph.
|
Additional References
Emit Step
The emit-step is not an actual step, but is instead a step modulator for repeat() (find more
documentation on the emit() there).
Additional References
Explain Step
The explain()-step (terminal) will return a TraversalExplanation. A traversal explanation details how the
traversal (prior to explain()) will be compiled given the registered traversal strategies.
A TraversalExplanation has a toString() representation with 3-columns. The first column is the
traversal strategy being applied. The second column is the traversal strategy category: [D]ecoration, [O]ptimization,
[P]rovider optimization, [F]inalization, and [V]erification. Finally, the third column is the state of the traversal
post strategy application. The final traversal is the resultant execution plan.
gremlin> g.V().hasLabel('person').outE().identity().inV().count().is(gt(5)).explain()
==>Traversal Explanation
==========================================================================================================================================================================================
Original Traversal [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), IdentityStep, EdgeVertexStep(IN), CountGlobalStep, IsStep(gt(5))]
ConnectiveStrategy [D] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), IdentityStep, EdgeVertexStep(IN), CountGlobalStep, IsStep(gt(5))]
IdentityRemovalStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), CountGlobalStep, IsStep(gt(5))]
MatchPredicateStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), CountGlobalStep, IsStep(gt(5))]
FilterRankingStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), CountGlobalStep, IsStep(gt(5))]
CountStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
EarlyLimitStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
InlineFilterStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), EdgeVertexStep(IN), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
IncidentToAdjacentStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,vertex), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
AdjacentToIncidentStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
ByModulatorOptimizationStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
RepeatUnrollStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
PathRetractionStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
LazyBarrierStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStepPlaceholder(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
GValueReductionStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
TinkerGraphCountStrategy [P] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
TinkerGraphStepStrategy [P] [TinkerGraphStep(vertex,[~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
ProfileStrategy [F] [TinkerGraphStep(vertex,[~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
StandardVerificationStrategy [V] [TinkerGraphStep(vertex,[~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
Final Traversal [TinkerGraphStep(vertex,[~label.eq(person)]), VertexStep(OUT,edge), RangeGlobalStep(0,6), CountGlobalStep, IsStep(gt(5))]
g.V().hasLabel('person').outE().identity().inV().count().is(gt(5)).explain()
For traversal profiling information, please see profile()-step.
Fail Step
The fail()-step provides a way to force a traversal to immediately fail with an exception. This feature is often
helpful during debugging purposes and for validating certain conditions prior to continuing with traversal execution.
gremlin> g.V().has('person','name','peter').fold().
......1> coalesce(unfold(),
......2> fail('peter should exist')).
......3> property('k',100)
==>v[6]
gremlin> g.V().has('person','name','stephen').fold().
......1> coalesce(unfold(),
......2> fail('stephen should exist')).
......3> property('k',100)
fail() Step Triggered
===========================================================================================================================
Message > stephen should exist
Traverser> []
Bulk > 1
Traversal> fail()
Parent > CoalesceStep [V().has("person","name","stephen").fold().coalesce(__.unfold(),__.fail()).property("k",(int) 100)]
Metadata > {}
===========================================================================================================================
The code example above exemplifies the latter use case where there is essentially an assertion that there is a vertex with a particular "name" value prior to updating the property "k" and explicitly failing when that vertex is not found.
The fail() step does not guarantee that mutations are not partially applied. Triggering fail() produces an
exception, but it’s effect on any open transactions or the underlying graph’s behavior ends there. Generally speaking,
mutations made to the point of fail() being triggered are applied and fail() itself has no influence on rolling back
those changes. It is up to the application catching that exception to act in a fashion that will allow for that
rollback. Moreover, the ability to rollback at all is graph provider dependent. For example, a basic TinkerGraph,
configured without transaction support, will simply be left in a partially mutated state whether the action to rollback
on fail() was implemented or not.
Additional References
Filter Step
The filter() step maps the traverser from the current object to either true or false where the latter will not
pass the traverser to the next step in the process. Please see the General Steps section for more
information.
Additional References
FlatMap Step
The flatMap() step maps the traverser from the current object to an Iterator of objects for the next step in the
process. Please see the General Steps section for more information.
Additional References
Format Step
This step is designed to simplify some string operations. In general, it is similar to the string formatting function available in many programming languages. Variable values can be picked up from Element properties, maps and scope variables.
gremlin> g.V().format("%{name} is %{age} years old") //// (1)
==>marko is 29 years old
==>vadas is 27 years old
==>josh is 32 years old
==>peter is 35 years old
gremlin> g.V().hasLabel("person").as("a").values("name").as("p1").select("a").in("knows").format("%{p1} knows %{name}") //// (2)
==>vadas knows marko
==>josh knows marko
gremlin> g.V().format("%{name} has %{_} connections").by(bothE().count()) //// (3)
==>marko has 3 connections
==>vadas has 1 connections
==>lop has 3 connections
==>josh has 3 connections
==>ripple has 1 connections
==>peter has 1 connections
gremlin> g.V().project("name","count").by(values("name")).by(bothE().count()).format("%{name} has %{count} connections") //// (4)
==>marko has 3 connections
==>vadas has 1 connections
==>lop has 3 connections
==>josh has 3 connections
==>ripple has 1 connections
==>peter has 1 connections
g.V().format("%{name} is %{age} years old") //// (1)
g.V().hasLabel("person").as("a").values("name").as("p1").select("a").in("knows").format("%{p1} knows %{name}") //// (2)
g.V().format("%{name} has %{_} connections").by(bothE().count()) //// (3)
g.V().project("name","count").by(values("name")).by(bothE().count()).format("%{name} has %{count} connections") //4
-
A
format()will use property values from incoming Element to produce String result. -
A
format()will use scope variablep1and propertynameto resolve variable values. -
A
format()will use propertynameand traversal product for positional argument to resolve variable values. -
A
format()will use map produced byprojectstep to resolve variable values.
Additional References
Fold Step
There are situations when the traversal stream needs a "barrier" to aggregate all the objects and emit a computation
that is a function of the aggregate. The fold()-step (map) is one particular instance of this. Please see
unfold()-step for the inverse functionality.
gremlin> g.V(1).out('knows').values('name')
==>vadas
==>josh
gremlin> g.V(1).out('knows').values('name').fold() //// (1)
==>[vadas,josh]
gremlin> g.V(1).out('knows').values('name').fold().next().getClass() //// (2)
==>class java.util.ArrayList
gremlin> g.V(1).out('knows').values('name').fold(0) {a,b -> a + b.length()} //// (3)
==>9
gremlin> g.V().values('age').fold(0) {a,b -> a + b} //// (4)
==>123
gremlin> g.V().values('age').fold(0, sum) //// (5)
==>123
gremlin> g.V().values('age').sum() //// (6)
==>123
gremlin> g.inject(["a":1],["b":2]).fold([], addAll) //// (7)
==>[[a:1],[b:2]]
g.V(1).out('knows').values('name')
g.V(1).out('knows').values('name').fold() //// (1)
g.V(1).out('knows').values('name').fold().next().getClass() //// (2)
g.V(1).out('knows').values('name').fold(0) {a,b -> a + b.length()} //// (3)
g.V().values('age').fold(0) {a,b -> a + b} //// (4)
g.V().values('age').fold(0, sum) //// (5)
g.V().values('age').sum() //// (6)
g.inject(["a":1],["b":2]).fold([], addAll) //7
-
A parameterless
fold()will aggregate all the objects into a list and then emit the list. -
A verification of the type of list returned.
-
fold()can be provided two arguments — a seed value and a reduce bi-function ("vadas" is 5 characters + "josh" with 4 characters). -
What is the total age of the people in the graph?
-
The same as before, but using a built-in bi-function.
-
The same as before, but using the
sum()-step. -
A mechanism for merging
Mapinstances. If a key occurs in more than a singleMap, the later occurrence will replace the earlier.
Additional References
From Step
The from()-step is not an actual step, but instead is a "step-modulator" similar to as() and
by(). If a step is able to accept traversals or strings then from() is the
means by which they are added. The general pattern is step().from(). See to()-step.
The list of steps that support from()-modulation are: simplePath(), cyclicPath(),
path(), and addE().
|
Javascript
|
The term |
|
Python
|
The term |
Additional References
Group Step
As traversers propagate across a graph as defined by a traversal, sideEffect computations are sometimes required.
That is, the actual path taken or the current location of a traverser is not the ultimate output of the computation,
but some other representation of the traversal. The group()-step (map/sideEffect) is one such sideEffect that
organizes the objects according to some function of the object. Then, if required, that organization (a list) is
reduced. An example is provided below.
gremlin> g.V().group().by(label) //// (1)
==>[software:[v[3],v[5]],person:[v[1],v[2],v[4],v[6]]]
gremlin> g.V().group().by(label).by('name') //// (2)
==>[software:[lop,ripple],person:[marko,vadas,josh,peter]]
gremlin> g.V().group().by(label).by(count()) //// (3)
==>[software:2,person:4]
g.V().group().by(label) //// (1)
g.V().group().by(label).by('name') //// (2)
g.V().group().by(label).by(count()) //3
-
Group the vertices by their label.
-
For each vertex in the group, get their name.
-
For each grouping, what is its size?
The two projection parameters available to group() via by() are:
-
Key-projection: What feature of the object to group on (a function that yields the map key)?
-
Value-projection: What feature of the group to store in the key-list?
gremlin> g.V().group().by('age').by('name') //// (1)
==>[32:[josh],35:[peter],27:[vadas],29:[marko]]
gremlin> g.V().group().by('name').by('age') //// (2)
==>[ripple:[],peter:[35],vadas:[27],josh:[32],lop:[],marko:[29]]
g.V().group().by('age').by('name') //// (1)
g.V().group().by('name').by('age') //2
-
The "age" property is not productive for all vertices and therefore those keys are filtered.
-
The "age" property is not productive for all vertices and therefore those values are filtered.
Additional References
GroupCount Step
When it is important to know how many times a particular object has been at a particular part of a traversal,
groupCount()-step (map/sideEffect) is used.
"What is the distribution of ages in the graph?"
gremlin> g.V().hasLabel('person').values('age').groupCount()
==>[32:1,35:1,27:1,29:1]
gremlin> g.V().hasLabel('person').groupCount().by('age') //// (1)
==>[32:1,35:1,27:1,29:1]
gremlin> g.V().groupCount().by('age') //// (2)
==>[32:1,35:1,27:1,29:1]
g.V().hasLabel('person').values('age').groupCount()
g.V().hasLabel('person').groupCount().by('age') //// (1)
g.V().groupCount().by('age') //2
-
You can also supply a pre-group projection, where the provided
by()-modulation determines what to group the incoming object by. -
The "age" property is not productive for all vertices and therefore those values are filtered.
There is one person that is 32, one person that is 35, one person that is 27, and one person that is 29.
"Iteratively walk the graph and count the number of times you see the second letter of each name."
gremlin> g.V().repeat(both().groupCount('m').by(label)).times(10).cap('m')
==>[software:19598,person:39196]
g.V().repeat(both().groupCount('m').by(label)).times(10).cap('m')
The above is interesting in that it demonstrates the use of referencing the internal Map<Object,Long> of
groupCount() with a string variable. Given that groupCount() is a sideEffect-step, it simply passes the object
it received to its output. Internal to groupCount(), the object’s count is incremented.
Additional References
Has Step
It is possible to filter vertices, edges, and vertex properties based on their properties using has()-step
(filter). There are numerous variations on has() including:
-
has(key,value): Remove the traverser if its element does not have the provided key/value property. -
has(label, key, value): Remove the traverser if its element does not have the specified label and provided key/value property. -
has(key,predicate): Remove the traverser if its element does not have a key value that satisfies the bi-predicate. For more information on predicates, please read A Note on Predicates. -
hasLabel(labels…): Remove the traverser if its element does not have any of the labels. -
hasId(ids…): Remove the traverser if its element does not have any of the ids. -
hasKey(keys…): Remove thePropertytraverser if it does not match one of the provided keys. -
hasValue(values…): Remove thePropertytraverser if it does not match one of the provided values. -
has(key): Remove the traverser if its element does not have a value for the key. -
hasNot(key): Remove the traverser if its element has a value for the key.
gremlin> g.V().hasLabel('person')
==>v[1]
==>v[2]
==>v[4]
==>v[6]
gremlin> g.V().hasLabel('person','name','marko')
==>v[1]
==>v[2]
==>v[4]
==>v[6]
gremlin> g.V().hasLabel('person').out().has('name',within('vadas','josh'))
==>v[2]
==>v[4]
gremlin> g.V().hasLabel('person').out().has('name',within('vadas','josh')).
outE().hasLabel('created')
==>e[10][4-created->5]
==>e[11][4-created->3]
gremlin> g.V().has('age',inside(20,30)).values('age') //// (1)
==>29
==>27
gremlin> g.V().has('age',outside(20,30)).values('age') //// (2)
==>32
==>35
gremlin> g.V().has('name',within('josh','marko')).elementMap() //// (3)
==>[id:1,label:person,name:marko,age:29]
==>[id:4,label:person,name:josh,age:32]
gremlin> g.V().has('name',without('josh','marko')).elementMap() //// (4)
==>[id:2,label:person,name:vadas,age:27]
==>[id:3,label:software,name:lop,lang:java]
==>[id:5,label:software,name:ripple,lang:java]
==>[id:6,label:person,name:peter,age:35]
gremlin> g.V().has('name',not(within('josh','marko'))).elementMap() //// (5)
==>[id:2,label:person,name:vadas,age:27]
==>[id:3,label:software,name:lop,lang:java]
==>[id:5,label:software,name:ripple,lang:java]
==>[id:6,label:person,name:peter,age:35]
gremlin> g.V().properties().hasKey('age').value() //// (6)
==>29
==>27
==>32
==>35
gremlin> g.V().hasNot('age').values('name') //// (7)
==>lop
==>ripple
gremlin> g.V().has('person','name', startingWith('m')) //// (8)
==>v[1]
gremlin> g.V().has(null, 'vadas') //// (9)
gremlin> g.V().has('person', 'name', regex('r')).values('name') //// (10)
==>marko
==>peter
g.V().hasLabel('person')
g.V().hasLabel('person','name','marko')
g.V().hasLabel('person').out().has('name',within('vadas','josh'))
g.V().hasLabel('person').out().has('name',within('vadas','josh')).
outE().hasLabel('created')
g.V().has('age',inside(20,30)).values('age') //// (1)
g.V().has('age',outside(20,30)).values('age') //// (2)
g.V().has('name',within('josh','marko')).elementMap() //// (3)
g.V().has('name',without('josh','marko')).elementMap() //// (4)
g.V().has('name',not(within('josh','marko'))).elementMap() //// (5)
g.V().properties().hasKey('age').value() //// (6)
g.V().hasNot('age').values('name') //// (7)
g.V().has('person','name', startingWith('m')) //// (8)
g.V().has(null, 'vadas') //// (9)
g.V().has('person', 'name', regex('r')).values('name') //10
-
Find all vertices whose ages are between 20 (exclusive) and 30 (exclusive). In other words, the age must be greater than 20 and less than 30.
-
Find all vertices whose ages are not between 20 (inclusive) and 30 (inclusive). In other words, the age must be less than 20 or greater than 30.
-
Find all vertices whose names are exact matches to any names in the collection
[josh,marko], display all the key,value pairs for those vertices. -
Find all vertices whose names are not in the collection
[josh,marko], display all the key,value pairs for those vertices. -
Same as the prior example save using
notonwithinto yieldwithout. -
Find all age-properties and emit their value.
-
Find all vertices that do not have an age-property and emit their name.
-
Find all "person" vertices that have a name property that starts with the letter "m".
-
Property key is always stored as
Stringand therefore an equality check withnullwill produce no result. -
An example of using
has()with regular expression predicate.
Additional References
has(String),
has(String,Object),
has(String,P),
has(String,String,Object),
has(String,String,P),
has(String,Traversal),
has(T,Object),
has(T,P),
has(T,Traversal),
hasId(Object,Object…),
hasId(P),
hasKey(P),
hasKey(String,String…),
hasLabel(P),
hasLabel(String,String…),
hasNot(String),
hasValue(Object,Object…),
hasValue(P),
P,
TextP,
T,
Recipes - Anti-pattern
Id Step
The id()-step (map) takes an Element and extracts its identifier from it.
gremlin> g.V().id()
==>1
==>2
==>3
==>4
==>5
==>6
gremlin> g.V(1).out().id().is(2)
==>2
gremlin> g.V(1).outE().id()
==>9
==>7
==>8
gremlin> g.V(1).properties().id()
==>0
==>1
g.V().id()
g.V(1).out().id().is(2)
g.V(1).outE().id()
g.V(1).properties().id()
Additional References
Identity Step
The identity()-step (map) is an identity function which maps
the current object to itself.
gremlin> g.V().identity()
==>v[1]
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
g.V().identity()
Additional References
Index Step
The index()-step (map) indexes each element in the current collection. If the current traverser’s value is not a collection, then it’s treated as a single-item collection. There are two indexers
available, which can be chosen using the with() modulator. The list indexer (default) creates a list for each collection item, with the first item being the original element and the second element
being the index. The map indexer created a linked hash map in which the index represents the key and the original item is used as the value.
gremlin> g.V().hasLabel("software").index() //// (1)
==>[[v[3],0]]
==>[[v[5],0]]
gremlin> g.V().hasLabel("software").values("name").fold().
order(Scope.local).
index().
unfold().
order().
by(__.tail(Scope.local, 1)) //// (2)
==>[lop,0]
==>[ripple,1]
gremlin> g.V().hasLabel("software").values("name").fold().
order(Scope.local).
index().
with(WithOptions.indexer, WithOptions.list).
unfold().
order().
by(__.tail(Scope.local, 1)) //// (3)
==>[lop,0]
==>[ripple,1]
gremlin> g.V().hasLabel("person").values("name").fold().
order(Scope.local).
index().
with(WithOptions.indexer, WithOptions.map) //// (4)
==>[0:josh,1:marko,2:peter,3:vadas]
g.V().hasLabel("software").index() //// (1)
g.V().hasLabel("software").values("name").fold().
order(Scope.local).
index().
unfold().
order().
by(__.tail(Scope.local, 1)) //// (2)
g.V().hasLabel("software").values("name").fold().
order(Scope.local).
index().
with(WithOptions.indexer, WithOptions.list).
unfold().
order().
by(__.tail(Scope.local, 1)) //// (3)
g.V().hasLabel("person").values("name").fold().
order(Scope.local).
index().
with(WithOptions.indexer, WithOptions.map) //4
-
Indexing non-collection items results in multiple indexed single-item collections.
-
Index all software names in their alphabetical order.
-
Same as statement 1, but with an explicitely specified list indexer.
-
Index all person names in their alphabetical order and store the result in an ordered map.
Additional References
Inject Step
The concept of "injectable steps" makes it possible to insert objects arbitrarily into a traversal stream. In general,
inject()-step (sideEffect) exists and a few examples are provided below.
gremlin> g.V(4).out().values('name').inject('daniel')
==>daniel
==>ripple
==>lop
gremlin> g.V(4).out().values('name').inject('daniel').map {it.get().length()}
==>6
==>6
==>3
gremlin> g.V(4).out().values('name').inject('daniel').map {it.get().length()}.path()
==>[daniel,6]
==>[v[4],v[5],ripple,6]
==>[v[4],v[3],lop,3]
g.V(4).out().values('name').inject('daniel')
g.V(4).out().values('name').inject('daniel').map {it.get().length()}
g.V(4).out().values('name').inject('daniel').map {it.get().length()}.path()
In the last example above, note that the path starting with daniel is only of length 2. This is because the
daniel string was inserted half-way in the traversal. Finally, a typical use case is provided below — when the
start of the traversal is not a graph object.
gremlin> inject(1,2)
==>1
==>2
gremlin> inject(1,2).map {it.get() + 1}
==>2
==>3
gremlin> inject(1,2).map {it.get() + 1}.map {g.V(it.get()).next()}.values('name')
==>vadas
==>lop
inject(1,2)
inject(1,2).map {it.get() + 1}
inject(1,2).map {it.get() + 1}.map {g.V(it.get()).next()}.values('name')
Additional References
Intersect Step
The intersect()-step (map) calculates the intersection between the incoming list traverser and the provided list
argument. This step only expects list data (array or Iterable) and will throw an IllegalArgumentException if any other
type is encountered (including null).
gremlin> g.V().values("name").fold().intersect(["marko","josh","james","jen"])
==>[josh,marko]
gremlin> g.V().values("name").fold().intersect(__.V().limit(2).values("name").fold())
==>[vadas,marko]
g.V().values("name").fold().intersect(["marko","josh","james","jen"])
g.V().values("name").fold().intersect(__.V().limit(2).values("name").fold())
Additional References
IO Step
The task of importing and exporting the data of Graph instances is the
job of the io()-step. By default, TinkerPop supports three formats for importing and exporting graph data in
GraphML, GraphSON, and Gryo.
|
Note
|
Additional documentation for TinkerPop IO formats can be found in the IO Reference. |
By itself the io()-step merely configures the kind of importing and exporting that is going
to occur and it is the follow-on call to the read() or write() step that determines which of those actions will
execute. Therefore, a typical usage of the io()-step would look like this:
g.io(someInputFile).read().iterate()
g.io(someOutputFile).write().iterate()
|
Important
|
The commands above are still traversals and therefore require iteration to be executed, hence the use of
iterate() as a termination step.
|
By default, the io()-step will try to detect the right file format using the file name extension. To gain greater
control of the format use the with() step modulator to provide further information to io(). For example:
g.io(someInputFile).
with(IO.reader, IO.graphson).
read().iterate()
g.io(someOutputFile).
with(IO.writer,IO.graphml).
write().iterate()
The IO class is a helper for the io()-step that provides expressions that can be used to help configure it
and in this case it allows direct specification of the "reader" or "writer" to use. The "reader" actually refers to
a GraphReader implementation and the "writer" refers to a GraphWriter implementation. The implementations of
those interfaces provided by default are the standard TinkerPop implementations.
That default is an important point to consider for users. The default TinkerPop implementations are not designed with massive, complex, parallel bulk loading in mind. They are designed to do single-threaded, OLTP-style loading of data in the most generic way possible so as to accommodate the greatest number of graph databases out there. As such, from a reading perspective, they work best for small datasets (or perhaps medium datasets where memory is plentiful and time is not critical) that are loading to an empty graph - incremental loading is not supported. The story from the writing perspective is not that different in there are no parallel operations in play, however streaming the output to disk requires a single pass of the data without high memory requirements for larger datasets.
|
Important
|
Default graph formats don’t contain information about property cardinality, so it is up to the graph provider to choose the appropriate one. You will see a warning message if the chosen cardinality is SINGLE while your graph input contains multiple values for that property. |
In general, TinkerPop recommends that users examine the native bulk import/export tools of the graph implementation
that they choose. Those tools will often outperform the io()-step and perhaps be easier to use with a greater
feature set. That said, graph providers do have the option to optimize io() to back it with their own
import/export utilities and therefore the default behavior provided by TinkerPop described above might be overridden
by the graph.
An excellent example of this lies in HadoopGraph with SparkGraphComputer
which replaces the default single-threaded implementation with a more advanced OLAP style bulk import/export
functionality internally using CloneVertexProgram. With this model, graphs of arbitrary size
can be imported/exported assuming that there is a Hadoop InputFormat or OutputFormat to support it.
|
Important
|
Remote Gremlin Console users or Gremlin Language Variant (GLV) users (e.g. gremlin-python) who utilize
the io()-step should recall that their read() or write() operation will occur on the server and not locally
and therefore the file specified for import/export must be something accessible by the server.
|
GraphSON and Gryo formats are extensible allowing users and graph providers to extend supported serialization options.
These extensions are exposed through IoRegistry implementations. To apply an IoRegistry use the with() option
and the IO.registry key, where the value is either an actual IoRegistry instance or the fully qualified class
name of one.
g.io(someInputFile).
with(IO.reader, IO.gryo).
with(IO.registry, TinkerIoRegistryV3d0.instance())
read().iterate()
g.io(someOutputFile).
with(IO.writer,IO.graphson).
with(IO.registry, "org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerIoRegistryV3d0")
write().iterate()
GLVs will obviously always be forced to use the latter form as they can’t explicitly create an instance of an
IoRegistry to pass to the server (nor are IoRegistry instances necessarily serializable).
The version of the formats (e.g. GraphSON 2.0 or 3.0) utilized by io() is determined entirely by the IO.reader and
IO.writer configurations or their defaults. The defaults will always be the latest version for the current release
of TinkerPop. It is also possible for graph providers to override these defaults, so consult the documentation of the
underlying graph database in use for any details on that.
|
Note
|
The io() step will try to automatically detect the appropriate GraphReader or GraphWriter to use based on
the file extension. If the file has a different extension than the ones expected, use with() as shown above to set the
reader or writer explicitly.
|
For more advanced configuration of GraphReader and GraphWriter operations (e.g. normalized output for GraphSON,
disabling class registrations for Gryo, etc.) then construct the appropriate GraphReader and GraphWriter using
the build() method on their implementations and use it directly. It can be passed directly to the IO.reader or
IO.writer options. Obviously, these are JVM based operations and thus not available to GLVs as portable features.
GraphML
The GraphML file format is a
common XML-based representation of a graph. It is widely supported by graph-related tools and libraries making it a
solid interchange format for TinkerPop. In other words, if the intent is to work with graph data in conjunction with
applications outside of TinkerPop, GraphML may be the best choice to do that. Common use cases might be:
|
Warning
|
GraphML is a "lossy" format in that it only supports primitive values for properties and does not have
support for Graph variables. It will use toString to serialize property values outside of those primitives.
|
|
Warning
|
GraphML as a specification allows for <edge> and <node> elements to appear in any order. Most software
that writes GraphML (including as TinkerPop’s GraphMLWriter) write <node> elements before <edge> elements.
However it is important to note that GraphMLReader will read this data in order and order can matter. This is because
TinkerPop does not allow the vertex label to be changed after the vertex has been created. Therefore, if an <edge>
element comes before the <node>, the label on the vertex will be ignored. It is thus better to order <node>
elements in the GraphML to appear before all <edge> elements if vertex labels are important to the graph.
|
// expects a file extension of .xml or .graphml to determine that
// a GraphML reader/writer should be used.
g.io("graph.xml").read().iterate();
g.io("graph.xml").write().iterate();
|
Note
|
If using GraphML generated from TinkerPop 2.x, read more about its incompatibilities in the Upgrade Documentation. |
GraphSON
GraphSON is a JSON-based format extended
from earlier versions of TinkerPop. It is important to note that TinkerPop’s GraphSON is not backwards compatible
with prior TinkerPop GraphSON versions. GraphSON has some support from graph-related application outside of TinkerPop,
but it is generally best used in two cases:
-
A text format of the graph or its elements is desired (e.g. debugging, usage in source control, etc.)
-
The graph or its elements need to be consumed by code that is not JVM-based (e.g. JavaScript, Python, .NET, etc.)
// expects a file extension of .json to interpret that
// a GraphSON reader/writer should be used
g.io("graph.json").read().iterate();
g.io("graph.json").write().iterate();
|
Note
|
Additional documentation for GraphSON can be found in the IO Reference. |
Gryo
Kryo is a popular
serialization package for the JVM. Gremlin-Kryo is a binary Graph serialization format for use on the JVM by JVM
languages. It is designed to be space efficient, non-lossy and is promoted as the standard format to use when working
with graph data inside of the TinkerPop stack. A list of common use cases is presented below:
-
Migration from one Gremlin Structure implementation to another (e.g.
TinkerGraphtoNeo4jGraph) -
Serialization of individual graph elements to be sent over the network to another JVM.
-
Backups of in-memory graphs or subgraphs.
|
Warning
|
When migrating between Gremlin Structure implementations, Kryo may not lose data, but it is important to
consider the features of each Graph and whether or not the data types supported in one will be supported in the
other. Failure to do so, may result in errors.
|
// expects a file extension of .kryo to interpret that
// a GraphSON reader/writer should be used
g.io("graph.kryo").read().iterate()
g.io("graph.kryo").write().iterate()
Additional References
Is Step
It is possible to filter scalar values using is()-step (filter).
|
Python
|
The term |
gremlin> g.V().values('age').is(32)
==>32
gremlin> g.V().values('age').is(lte(30))
==>29
==>27
gremlin> g.V().values('age').is(inside(30, 40))
==>32
==>35
gremlin> g.V().where(__.in('created').count().is(1)).values('name') //// (1)
==>ripple
gremlin> g.V().where(__.in('created').count().is(gte(2))).values('name') //// (2)
==>lop
gremlin> g.V().where(__.in('created').values('age').
mean().is(inside(30d, 35d))).values('name') //// (3)
==>lop
==>ripple
g.V().values('age').is(32)
g.V().values('age').is(lte(30))
g.V().values('age').is(inside(30, 40))
g.V().where(__.in('created').count().is(1)).values('name') //// (1)
g.V().where(__.in('created').count().is(gte(2))).values('name') //// (2)
g.V().where(__.in('created').values('age').
mean().is(inside(30d, 35d))).values('name') //3
-
Find projects having exactly one contributor.
-
Find projects having two or more contributors.
-
Find projects whose contributors average age is between 30 and 35.
Additional References
is(Object),
is(P),
P
Key Step
The key()-step (map) takes a Property and extracts the key from it.
gremlin> g.V(1).properties().key()
==>name
==>location
==>location
==>location
==>location
gremlin> g.V(1).properties().properties().key()
==>startTime
==>endTime
==>startTime
==>endTime
==>startTime
==>endTime
==>startTime
g.V(1).properties().key()
g.V(1).properties().properties().key()
Additional References
Label Step
The label()-step (map) takes an Element and extracts its label from it.
gremlin> g.V().label()
==>person
==>person
==>software
==>person
==>software
==>person
gremlin> g.V(1).outE().label()
==>created
==>knows
==>knows
gremlin> g.V(1).properties().label()
==>name
==>age
g.V().label()
g.V(1).outE().label()
g.V(1).properties().label()
Additional References
Length Step
The length()-step (map) returns the length incoming string or list of string traverser. Null values are not processed and remain as null when returned.
If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.V().values('name').length() //// (1)
==>5
==>5
==>3
==>4
==>6
==>5
gremlin> g.V().values('name').fold().length(local) //// (2)
==>[5,5,3,4,6,5]
g.V().values('name').length() //// (1)
g.V().values('name').fold().length(local) //2
-
Return the string length of all vertex names.
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
Limit Step
The limit()-step is analogous to range()-step save that the lower end range is set to 0.
gremlin> g.V().limit(2)
==>v[1]
==>v[2]
gremlin> g.V().range(0, 2)
==>v[1]
==>v[2]
g.V().limit(2)
g.V().range(0, 2)
The limit()-step can also be applied with Scope.local, in which case it operates on the incoming collection.
The examples below use the The Crew toy data set.
gremlin> g.V().valueMap().select('location').limit(local,2) //// (1)
==>[san diego,santa cruz]
==>[centreville,dulles]
==>[bremen,baltimore]
==>[spremberg,kaiserslautern]
gremlin> g.V().valueMap().limit(local, 1) //// (2)
==>[name:[marko]]
==>[name:[stephen]]
==>[name:[matthias]]
==>[name:[daniel]]
==>[name:[gremlin]]
==>[name:[tinkergraph]]
gremlin> g.V().valueMap().select('location').limit(local, 1) //// (3)
==>[san diego]
==>[centreville]
==>[bremen]
==>[spremberg]
gremlin> g.V().valueMap().select('location').limit(local, 1).unfold() //// (4)
==>san diego
==>centreville
==>bremen
==>spremberg
g.V().valueMap().select('location').limit(local,2) //// (1)
g.V().valueMap().limit(local, 1) //// (2)
g.V().valueMap().select('location').limit(local, 1) //// (3)
g.V().valueMap().select('location').limit(local, 1).unfold() //4
-
List<String>for each vertex containing the first two locations. -
Map<String, Object>for each vertex, but containing only the first property value. -
List<String>for each vertex containing the first location. -
Stringfor each vertex containing the first location (useunfold()to extract single elements from singleton collections).
Additional References
Local Step
A GraphTraversal operates on a continuous stream of objects. In many situations, it is important to operate on a
single element within that stream. To do such object-local traversal computations, local()-step exists (branch).
Note that the examples below use the The Crew toy data set.
gremlin> g.V().as('person').
properties('location').order().by('startTime',asc).limit(2).value().as('location').
select('person','location').by('name').by() //// (1)
==>[person:daniel,location:spremberg]
==>[person:stephen,location:centreville]
gremlin> g.V().as('person').
local(properties('location').order().by('startTime',asc).limit(2)).value().as('location').
select('person','location').by('name').by() //// (2)
==>[person:marko,location:san diego]
==>[person:marko,location:santa cruz]
==>[person:stephen,location:centreville]
==>[person:stephen,location:dulles]
==>[person:matthias,location:bremen]
==>[person:matthias,location:baltimore]
==>[person:daniel,location:spremberg]
==>[person:daniel,location:kaiserslautern]
g.V().as('person').
properties('location').order().by('startTime',asc).limit(2).value().as('location').
select('person','location').by('name').by() //// (1)
g.V().as('person').
local(properties('location').order().by('startTime',asc).limit(2)).value().as('location').
select('person','location').by('name').by() //2
-
Get the first two people and their respective location according to the most historic location start time.
-
For every person, get their two most historic locations.
The two traversals above look nearly identical save the inclusion of local() which wraps a section of the traversal
in an object-local traversal. As such, the order().by() and the limit() refer to a particular object, not to the
stream as a whole.
Local Step is quite similar in functionality to Flat Map Step where it can often be confused.
local() propagates the traverser through the internal traversal as is without splitting/cloning it. Thus, its
a “global traversal” with local processing. Its use is subtle and primarily finds application in compilation
optimizations (i.e. when writing TraversalStrategy implementations. As another example consider:
gremlin> g.V().both().barrier().flatMap(groupCount().by("name"))
==>[lop:1]
==>[lop:1]
==>[lop:1]
==>[vadas:1]
==>[josh:1]
==>[josh:1]
==>[josh:1]
==>[marko:1]
==>[marko:1]
==>[marko:1]
==>[peter:1]
==>[ripple:1]
gremlin> g.V().both().barrier().local(groupCount().by("name"))
==>[lop:3]
==>[vadas:1]
==>[josh:3]
==>[marko:3]
==>[peter:1]
==>[ripple:1]
g.V().both().barrier().flatMap(groupCount().by("name"))
g.V().both().barrier().local(groupCount().by("name"))
Use of local() is often a mistake. This is especially true when its argument contains a reducing step. For example,
let’s say the requirement was to count the number of properties per Vertex in:
gremlin> g.V().both().local(properties('name','age').count()) //// (1)
==>3
==>2
==>6
==>6
==>2
==>1
gremlin> g.V().both().map(properties('name','age').count()) //// (2)
==>1
==>1
==>1
==>2
==>2
==>2
==>2
==>2
==>2
==>2
==>2
==>1
g.V().both().local(properties('name','age').count()) //// (1)
g.V().both().map(properties('name','age').count()) //2
-
The output here seems impossible because no single vertex in the "modern" graph can have more than two properties given the "name" and "age" filters, but because the counting is happening object-local the counting is occurring unique to each object rather than each global traverser.
-
Replacing
local()withmap()returns the result desired by the requirement.
|
Warning
|
The anonymous traversal of local() processes the current object "locally." In OLAP, where the atomic unit
of computing is the vertex and its local "star graph," it is important that the anonymous traversal does not leave
the confines of the vertex’s star graph. In other words, it can not traverse to an adjacent vertex’s properties or edges.
|
Additional References
Loops Step
The loops()-step (map) extracts the number of times the Traverser has gone through the current loop.
gremlin> g.V().emit(__.has("name", "marko").or().loops().is(2)).repeat(__.out()).values("name")
==>marko
==>ripple
==>lop
g.V().emit(__.has("name", "marko").or().loops().is(2)).repeat(__.out()).values("name")
Additional References
LTrim Step
The lTrim()-step (map) returns a string with leading whitespace removed. Null values are not processed and remain
as null when returned. If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject(" hello ", " world ", null).lTrim()
==>hello
==>world
==>null
gremlin> g.inject([" hello ", " world ", null]).lTrim(local) //// (1)
==>[hello ,world ,null]
g.inject(" hello ", " world ", null).lTrim()
g.inject([" hello ", " world ", null]).lTrim(local) //1
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Map Step
The map() step maps the traverser from the current object to the next step in the process. Please see the
General Steps section for more information.
Additional References
Match Step
The match()-step (map) provides a more declarative
form of graph querying based on the notion of pattern matching.
With match(), the user provides a collection of "traversal fragments," called patterns, that have variables defined
that must hold true throughout the duration of the match(). When a traverser is in match(), a registered
MatchAlgorithm analyzes the current state of the traverser (i.e. its history based on its
path data), the runtime statistics of the traversal patterns, and returns a traversal-pattern
that the traverser should try next. The default MatchAlgorithm provided is called CountMatchAlgorithm and it
dynamically revises the pattern execution plan by sorting the patterns according to their filtering capabilities
(i.e. largest set reduction patterns execute first). For very large graphs, where the developer is uncertain of the
statistics of the graph (e.g. how many knows-edges vs. worksFor-edges exist in the graph), it is advantageous to
use match(), as an optimal plan will be determined automatically. Furthermore, some queries are much easier to
express via match() than with single-path traversals.
"Who created a project named 'lop' that was also created by someone who is 29 years old? Return the two creators."
gremlin> g.V().match(
__.as('a').out('created').as('b'),
__.as('b').has('name', 'lop'),
__.as('b').in('created').as('c'),
__.as('c').has('age', 29)).
select('a','c').by('name')
==>[a:marko,c:marko]
==>[a:josh,c:marko]
==>[a:peter,c:marko]
g.V().match(
__.as('a').out('created').as('b'),
__.as('b').has('name', 'lop'),
__.as('b').in('created').as('c'),
__.as('c').has('age', 29)).
select('a','c').by('name')
Note that the above can also be more concisely written as below which demonstrates that standard inner-traversals can be arbitrarily defined.
gremlin> g.V().match(
__.as('a').out('created').has('name', 'lop').as('b'),
__.as('b').in('created').has('age', 29).as('c')).
select('a','c').by('name')
==>[a:marko,c:marko]
==>[a:josh,c:marko]
==>[a:peter,c:marko]
g.V().match(
__.as('a').out('created').has('name', 'lop').as('b'),
__.as('b').in('created').has('age', 29).as('c')).
select('a','c').by('name')
In order to improve readability, as()-steps can be given meaningful labels which better reflect your domain. The
previous query can thus be written in a more expressive way as shown below.
gremlin> g.V().match(
__.as('creators').out('created').has('name', 'lop').as('projects'), //// (1)
__.as('projects').in('created').has('age', 29).as('cocreators')). //// (2)
select('creators','cocreators').by('name') //// (3)
==>[creators:marko,cocreators:marko]
==>[creators:josh,cocreators:marko]
==>[creators:peter,cocreators:marko]
g.V().match(
__.as('creators').out('created').has('name', 'lop').as('projects'), //// (1)
__.as('projects').in('created').has('age', 29).as('cocreators')). //// (2)
select('creators','cocreators').by('name') //3
-
Find vertices that created something and match them as 'creators', then find out what they created which is named 'lop' and match these vertices as 'projects'.
-
Using these 'projects' vertices, find out their creators aged 29 and remember these as 'cocreators'.
-
Return the name of both 'creators' and 'cocreators'.
MatchStep brings functionality similar to SPARQL to Gremlin. Like SPARQL,
MatchStep conjoins a set of patterns applied to a graph. For example, the following traversal finds exactly those
songs which Jerry Garcia has both sung and written (using the Grateful Dead graph distributed in the data/ directory):
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> g.V().match(
__.as('a').has('name', 'Garcia'),
__.as('a').in('writtenBy').as('b'),
__.as('a').in('sungBy').as('b')).
select('b').values('name')
==>CREAM PUFF WAR
==>CRYPTICAL ENVELOPMENT
g = traversal().with(graph)
g.io('data/grateful-dead.xml').read().iterate()
g.V().match(
__.as('a').has('name', 'Garcia'),
__.as('a').in('writtenBy').as('b'),
__.as('a').in('sungBy').as('b')).
select('b').values('name')
Among the features which differentiate match() from SPARQL are:
gremlin> g.V().match(
__.as('a').out('created').has('name','lop').as('b'), //// (1)
__.as('b').in('created').has('age', 29).as('c'),
__.as('c').repeat(out()).times(2)). //// (2)
select('c').out('knows').dedup().values('name') //// (3)
==>vadas
==>josh
g.V().match(
__.as('a').out('created').has('name','lop').as('b'), //// (1)
__.as('b').in('created').has('age', 29).as('c'),
__.as('c').repeat(out()).times(2)). //// (2)
select('c').out('knows').dedup().values('name') //3
-
Patterns of arbitrary complexity:
match()is not restricted to triple patterns or property paths. -
Recursion support:
match()supports the branch-based steps within a pattern, includingrepeat(). -
Imperative/declarative hybrid: Before and after a
match(), it is possible to leverage classic Gremlin traversals.
To extend point #3, it is possible to support going from imperative, to declarative, to imperative, ad infinitum.
gremlin> g.V().match(
__.as('a').out('knows').as('b'),
__.as('b').out('created').has('name','lop')).
select('b').out('created').
match(
__.as('x').in('created').as('y'),
__.as('y').out('knows').as('z')).
select('z').values('name')
==>vadas
==>josh
g.V().match(
__.as('a').out('knows').as('b'),
__.as('b').out('created').has('name','lop')).
select('b').out('created').
match(
__.as('x').in('created').as('y'),
__.as('y').out('knows').as('z')).
select('z').values('name')
|
Important
|
The match()-step is stateless. The variable bindings of the traversal patterns are stored in the path
history of the traverser. As such, the variables used over all match()-steps within a traversal are globally unique.
A benefit of this is that subsequent where(), select(), match(), etc. steps can leverage the same variables in
their analysis.
|
Like all other steps in Gremlin, match() is a function and thus, match() within match() is a natural consequence
of Gremlin’s functional foundation (i.e. recursive matching).
gremlin> g.V().match(
__.as('a').out('knows').as('b'),
__.as('b').out('created').has('name','lop'),
__.as('b').match(
__.as('b').out('created').as('c'),
__.as('c').has('name','ripple')).
select('c').as('c')).
select('a','c').by('name')
==>[a:marko,c:ripple]
g.V().match(
__.as('a').out('knows').as('b'),
__.as('b').out('created').has('name','lop'),
__.as('b').match(
__.as('b').out('created').as('c'),
__.as('c').has('name','ripple')).
select('c').as('c')).
select('a','c').by('name')
If a step-labeled traversal proceeds the match()-step and the traverser entering the match() is destined to bind
to a particular variable, then the previous step should be labeled accordingly.
gremlin> g.V().as('a').out('knows').as('b').
match(
__.as('b').out('created').as('c'),
__.not(__.as('c').in('created').as('a'))).
select('a','b','c').by('name')
==>[a:marko,b:josh,c:ripple]
g.V().as('a').out('knows').as('b').
match(
__.as('b').out('created').as('c'),
__.not(__.as('c').in('created').as('a'))).
select('a','b','c').by('name')
There are three types of match() traversal patterns.
-
as('a')…as('b'): both the start and end of the traversal have a declared variable. -
as('a')…: only the start of the traversal has a declared variable. -
…: there are no declared variables.
If a variable is at the start of a traversal pattern it must exist as a label in the path history of the traverser
else the traverser can not go down that path. If a variable is at the end of a traversal pattern then if the variable
exists in the path history of the traverser, the traverser’s current location must match (i.e. equal) its historic
location at that same label. However, if the variable does not exist in the path history of the traverser, then the
current location is labeled as the variable and thus, becomes a bound variable for subsequent traversal patterns. If a
traversal pattern does not have an end label, then the traverser must simply "survive" the pattern (i.e. not be
filtered) to continue to the next pattern. If a traversal pattern does not have a start label, then the traverser
can go down that path at any point, but will only go down that pattern once as a traversal pattern is executed once
and only once for the history of the traverser. Typically, traversal patterns that do not have a start and end label
are used in conjunction with and(), or(), and where(). Once the traverser has "survived" all the patterns (or at
least one for or()), match()-step analyzes the traverser’s path history and emits a Map<String,Object> of the
variable bindings to the next step in the traversal.
gremlin> g.V().as('a').out().as('b'). //// (1)
match( //// (2)
__.as('a').out().count().as('c'), //// (3)
__.not(__.as('a').in().as('b')), //// (4)
or( //// (5)
__.as('a').out('knows').as('b'),
__.as('b').in().count().as('c').and().as('c').is(gt(2)))). //// (6)
dedup('a','c'). //// (7)
select('a','b','c').by('name').by('name').by() //// (8)
==>[a:marko,b:lop,c:3]
g.V().as('a').out().as('b'). //// (1)
match( //// (2)
__.as('a').out().count().as('c'), //// (3)
__.not(__.as('a').in().as('b')), //// (4)
or( //// (5)
__.as('a').out('knows').as('b'),
__.as('b').in().count().as('c').and().as('c').is(gt(2)))). //// (6)
dedup('a','c'). //// (7)
select('a','b','c').by('name').by('name').by() //8
-
A standard, step-labeled traversal can come prior to
match(). -
If the traverser’s path prior to entering
match()has requisite label values, then those historic values are bound. -
It is possible to use barrier steps though they are computed locally to the pattern (as one would expect).
-
It is possible to
not()a pattern. -
It is possible to nest
and()- andor()-steps for conjunction matching. -
Both infix and prefix conjunction notation is supported.
-
It is possible to "distinct" the specified label combination.
-
The bound values are of different types — vertex ("a"), vertex ("b"), long ("c").
Using Where with Match
Match is typically used in conjunction with both select() (demonstrated previously) and where() (presented here).
A where()-step allows the user to further constrain the result set provided by match().
gremlin> g.V().match(
__.as('a').out('created').as('b'),
__.as('b').in('created').as('c')).
where('a', neq('c')).
select('a','c').by('name')
==>[a:marko,c:josh]
==>[a:marko,c:peter]
==>[a:josh,c:marko]
==>[a:josh,c:peter]
==>[a:peter,c:marko]
==>[a:peter,c:josh]
g.V().match(
__.as('a').out('created').as('b'),
__.as('b').in('created').as('c')).
where('a', neq('c')).
select('a','c').by('name')
The where()-step can take either a P-predicate (example above) or a Traversal (example below). Using
MatchPredicateStrategy, where()-clauses are automatically folded into match() and thus, subject to the query
optimizer within match()-step.
gremlin> traversal = g.V().match(
__.as('a').has(label,'person'), //// (1)
__.as('a').out('created').as('b'),
__.as('b').in('created').as('c')).
where(__.as('a').out('knows').as('c')). //// (2)
select('a','c').by('name'); null //// (3)
==>null
gremlin> traversal.toString() //// (4)
==>[GraphStep(vertex,[]), MatchStep(null,AND,[[MatchStartStep(a), HasStep([~label.eq(person)]), MatchEndStep(null)], [MatchStartStep(a), VertexStep(OUT,[created],vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(IN,[created],vertex), MatchEndStep(c)]]), WhereTraversalStep([WhereStartStep(a), VertexStep(OUT,[knows],vertex), WhereEndStep(c)]), SelectStep(last,[a, c],[value(name)])]
gremlin> traversal // // (5) (6)
==>[a:marko,c:josh]
gremlin> traversal.toString() //// (7)
==>[TinkerGraphStep(vertex,[~label.eq(person)])@[a], MatchStep(null,AND,[[MatchStartStep(a), VertexStep(OUT,[created],vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(IN,[created],vertex), MatchEndStep(c)], [MatchStartStep(a), WhereTraversalStep([WhereStartStep(null), VertexStep(OUT,[knows],vertex), WhereEndStep(c)]), MatchEndStep(null)]]), SelectStep(last,[a, c],[value(name)])]
traversal = g.V().match(
__.as('a').has(label,'person'), //// (1)
__.as('a').out('created').as('b'),
__.as('b').in('created').as('c')).
where(__.as('a').out('knows').as('c')). //// (2)
select('a','c').by('name'); null //// (3)
traversal.toString() //// (4)
traversal // // (5) (6) (5)
traversal.toString() //7
-
Any
has()-step traversal patterns that start with the match-key are pulled out ofmatch()to enable the graph system to leverage the filter for index lookups. -
A
where()-step with a traversal containing variable bindings declared inmatch(). -
A useful trick to ensure that the traversal is not iterated by Gremlin Console.
-
The string representation of the traversal prior to its strategies being applied.
-
The Gremlin Console will automatically iterate anything that is an iterator or is iterable.
-
Both marko and josh are co-developers and marko knows josh.
-
The string representation of the traversal after the strategies have been applied (and thus,
where()is folded intomatch())
|
Important
|
A where()-step is a filter and thus, variables within a where() clause are not globally bound to the
path of the traverser in match(). As such, where()-steps in match() are used for filtering, not binding.
|
Additional References
Math Step
The math()-step (math) enables scientific calculator functionality within Gremlin. This step deviates from the common
function composition and nesting formalisms to provide an easy to read string-based math processor. Variables within the
equation map to scopes in Gremlin — e.g. path labels, side-effects, or incoming map keys. This step supports
by()-modulation where the by()-modulators are applied in the order in which the variables are first referenced
within the equation. Note that the reserved variable _ refers to the current numeric traverser object incoming to the
math()-step.
gremlin> g.V().as('a').out('knows').as('b').math('a + b').by('age')
==>56.0
==>61.0
gremlin> g.V().as('a').out('created').as('b').
math('b + a').
by(both().count().math('_ + 100')).
by('age')
==>132.0
==>133.0
==>135.0
==>138.0
gremlin> g.withSideEffect('x',10).V().values('age').math('_ / x')
==>2.9
==>2.7
==>3.2
==>3.5
gremlin> g.withSack(1).V(1).repeat(sack(sum).by(constant(1))).times(10).emit().sack().math('sin _')
==>0.9092974268256817
==>0.1411200080598672
==>-0.7568024953079282
==>-0.9589242746631385
==>-0.27941549819892586
==>0.6569865987187891
==>0.9893582466233818
==>0.4121184852417566
==>-0.5440211108893698
==>-0.9999902065507035
gremlin> g.V().math('_+1').by('age') //// (1)
==>30.0
==>28.0
==>33.0
==>36.0
g.V().as('a').out('knows').as('b').math('a + b').by('age')
g.V().as('a').out('created').as('b').
math('b + a').
by(both().count().math('_ + 100')).
by('age')
g.withSideEffect('x',10).V().values('age').math('_ / x')
g.withSack(1).V(1).repeat(sack(sum).by(constant(1))).times(10).emit().sack().math('sin _')
g.V().math('_+1').by('age') //1
-
The "age" property is not productive for all vertices and therefore those values are filtered.
The operators supported by the calculator include: *, +, /, ^, and %. Furthermore, the following built in
functions are provided:
-
abs: absolute value -
acos: arc cosine -
asin: arc sine -
atan: arc tangent -
cbrt: cubic root -
ceil: nearest upper integer -
cos: cosine -
cosh: hyperbolic cosine -
exp: euler’s number raised to the power (e^x) -
floor: nearest lower integer -
log: logarithmus naturalis (base e) -
log10: logarithm (base 10) -
log2: logarithm (base 2) -
sin: sine -
sinh: hyperbolic sine -
sqrt: square root -
tan: tangent -
tanh: hyperbolic tangent -
signum: signum function
Additional References
Max Step
The max()-step (map) operates on a stream of comparable objects and determines which is the last object according
to its natural order in the stream.
gremlin> g.V().values('age').max()
==>35
gremlin> g.V().repeat(both()).times(3).values('age').max()
==>35
gremlin> g.V().values('name').max()
==>vadas
g.V().values('age').max()
g.V().repeat(both()).times(3).values('age').max()
g.V().values('name').max()
When called as max(local) it determines the maximum value of the current, local object (not the objects in the
traversal stream). This works for Collection and Comparable-type objects.
gremlin> g.V().values('age').fold().max(local)
==>35
g.V().values('age').fold().max(local)
When there are null values being evaluated the null objects are ignored, but if all values are recognized as null
the return value is null.
gremlin> g.inject(null,10, 9, null).max()
==>10
gremlin> g.inject([null,null,null]).max(local)
==>null
g.inject(null,10, 9, null).max()
g.inject([null,null,null]).max(local)
Additional References
Mean Step
The mean()-step (map) operates on a stream of numbers and determines the average of those numbers.
gremlin> g.V().values('age').mean()
==>30.75
gremlin> g.V().repeat(both()).times(3).values('age').mean() //// (1)
==>30.645833333333332
gremlin> g.V().repeat(both()).times(3).values('age').dedup().mean()
==>30.75
g.V().values('age').mean()
g.V().repeat(both()).times(3).values('age').mean() //// (1)
g.V().repeat(both()).times(3).values('age').dedup().mean()
-
Realize that traversers are being bulked by
repeat(). There may be more of a particular number than another, thus altering the average.
When called as mean(local) it determines the mean of the current, local object (not the objects in the traversal
stream). This works for Collection and Number-type objects.
gremlin> g.V().values('age').fold().mean(local)
==>30.75
g.V().values('age').fold().mean(local)
If mean() encounters null values, they will be ignored (i.e. their traversers not counted toward toward the
divisor). If all traversers are null then the stream will return null.
gremlin> g.inject(null,10, 9, null).mean()
==>9.5
gremlin> g.inject([null,null,null]).mean(local)
==>null
g.inject(null,10, 9, null).mean()
g.inject([null,null,null]).mean(local)
Additional References
Merge Step
The merge()-step (map) combines collections like lists and maps. It expects an incoming traverser to contain a
collection objection and will combine that object with its specified argument which must be of a matching type. This is
also known as the union operation. If the incoming traverser or its associated argument do not meet the expected type,
the step will throw an IllegalArgumentException if any other type is encountered (including null). This step differs
from the combine()-step in that it doesn’t allow duplicates.
gremlin> g.V().values("name").fold().merge(["james","jen","marko","vadas"])
==>[jen,ripple,peter,vadas,james,josh,lop,marko]
gremlin> g.V().values("name").fold().merge(__.constant("james").fold())
==>[ripple,peter,vadas,james,josh,lop,marko]
gremlin> g.V().hasLabel('software').elementMap().merge([year:2009])
==>[label:software,name:lop,id:3,lang:java,year:2009]
==>[label:software,name:ripple,id:5,lang:java,year:2009]
g.V().values("name").fold().merge(["james","jen","marko","vadas"])
g.V().values("name").fold().merge(__.constant("james").fold())
g.V().hasLabel('software').elementMap().merge([year:2009])
Additional References
MergeEdge Step
The mergeE() step is used to add edges and their properties to a graph in a "create
if not exist" fashion. The mergeE() step can also be used to find edges matching a given
pattern. The input passed to mergeE() can be either a Map, or a child traversal that
produces a Map.
|
Note
|
There is a corresponding mergeV() step that can be used when creating vertices.
|
Additionally, option() modulators may be combined with mergeE() to take action depending on
whether a vertex was created, or already existed. There are various ways that mergeE() can
be used. The simplest being to provide a single Map of keys and values, along with the
source and target vertex IDs, as a parameter. A T.id and a T.label may also be provided but
this is optional. The mergeE() step can be used directly from the GraphTraversalSource - g,
or in the middle of a traversal. For a match with an existing vertex to occur, all values
in the Map must exist on a vertex; otherwise, a new vertex will be created. The examples
that follow show how mergeE() can be used to add relationships between dogs in the graph.
gremlin> g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
==>v[1]
gremlin> g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy']) //// (1)
==>v[2]
gremlin> g.mergeE([(T.label):'Sibling',created:'2022-02-07',(Direction.from):1,(Direction.to):2]) //// (2)
==>e[2][1-Sibling->2]
gremlin> g.E().elementMap()
==>[id:2,label:Sibling,IN:[id:2,label:Dog],OUT:[id:1,label:Dog],created:2022-02-07]
g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy']) //// (1)
g.mergeE([(T.label):'Sibling',created:'2022-02-07',(Direction.from):1,(Direction.to):2]) //// (2)
g.E().elementMap()
-
Create two vertices with ID values of 1 and 2.
-
Create a "Sibling" relationship between the vertices.
|
Note
|
The example above is written with gremlin-groovy and evaluated in Gremlin Console as a Groovy script thus
allowing Groovy syntax for initializing a Map.
|
For a mergeE() step to succeed, both the from and to vertices must already exist. It
is not possible to create new vertices directly using mergeE(), but mergeV() and mergeE()
steps can be combined, in a single query, to achieve that goal.
|
Note
|
The mergeE() step will not create vertices that do not exist. In those cases an
error will be returned.
|
If the Direction enum has been statically included, its explicit use can be omitted from
the query.
gremlin> g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
==>v[1]
gremlin> g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
==>v[2]
gremlin> g.mergeE([(T.label):'Sibling',created:'2022-02-07',(from):1,(to):2])
==>e[2][1-Sibling->2]
gremlin> g.E().elementMap()
==>[id:2,label:Sibling,IN:[id:2,label:Dog],OUT:[id:1,label:Dog],created:2022-02-07]
g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
g.mergeE([(T.label):'Sibling',created:'2022-02-07',(from):1,(to):2])
g.E().elementMap()
One or more option() steps can be used to control the behavior when an edge is created or
updated. Similar to mergeV(), the onCreate Map inherits from the main merge argument - any
existence criteria in the main merge argument (T.id, T.label, Direction.OUT, Direction.IN)
will be automatically carried over to the onCreate action, and these existence criteria cannot be overriden
in the onCreate Map.
gremlin> g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
==>v[1]
gremlin> g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
==>v[2]
gremlin> g.withSideEffect('map',[(T.label):'Sibling',(from):1,(to):2]).
mergeE(select('map')).
option(Merge.onCreate,[created:'2022-02-07']). //// (1)
option(Merge.onMatch,[updated:'2022-02-07'])
==>e[2][1-Sibling->2]
gremlin> g.E().elementMap()
==>[id:2,label:Sibling,IN:[id:2,label:Dog],OUT:[id:1,label:Dog],created:2022-02-07]
gremlin> g.withSideEffect('map',[(T.label):'Sibling',(from):1,(to):2]).
mergeE(select('map')).
option(Merge.onCreate,[created:'2022-02-07']).
option(Merge.onMatch,[updated:'2022-02-07']) //// (2)
==>e[2][1-Sibling->2]
gremlin> g.E().elementMap()
==>[id:2,label:Sibling,IN:[id:2,label:Dog],OUT:[id:1,label:Dog],created:2022-02-07,updated:2022-02-07]
g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby'])
g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
g.withSideEffect('map',[(T.label):'Sibling',(from):1,(to):2]).
mergeE(select('map')).
option(Merge.onCreate,[created:'2022-02-07']). //// (1)
option(Merge.onMatch,[updated:'2022-02-07'])
g.E().elementMap()
g.withSideEffect('map',[(T.label):'Sibling',(from):1,(to):2]).
mergeE(select('map')).
option(Merge.onCreate,[created:'2022-02-07']).
option(Merge.onMatch,[updated:'2022-02-07']) //// (2)
g.E().elementMap()
-
The edge did not exist - set the created date.
-
The edge did exist - set the updated date.
More than one edge can be created by a single mergeE() operation. This is done by
injecting a list of maps into the traversal and letting them stream into the mergeE()
step.
gremlin> maps = [[(T.label):'Siblings',(from):1,(to):2],
[(T.label):'Siblings',(from):1,(to):3]]
==>[label:Siblings,OUT:1,IN:2]
==>[label:Siblings,OUT:1,IN:3]
gremlin> g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby']) //// (1)
==>v[1]
gremlin> g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
==>v[2]
gremlin> g.mergeV([(T.id):3,(T.label):'Dog',name:'Dax'])
==>v[3]
gremlin> g.inject(maps).unfold().mergeE() //// (2)
==>e[3][1-Siblings->2]
==>e[4][1-Siblings->3]
gremlin> g.E().elementMap()
==>[id:3,label:Siblings,IN:[id:2,label:Dog],OUT:[id:1,label:Dog]]
==>[id:4,label:Siblings,IN:[id:3,label:Dog],OUT:[id:1,label:Dog]]
maps = [[(T.label):'Siblings',(from):1,(to):2],
[(T.label):'Siblings',(from):1,(to):3]]
g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby']) //// (1)
g.mergeV([(T.id):2,(T.label):'Dog',name:'Brandy'])
g.mergeV([(T.id):3,(T.label):'Dog',name:'Dax'])
g.inject(maps).unfold().mergeE() //// (2)
g.E().elementMap()
-
Create three dogs.
-
Stream the edge maps into
mergeE()steps.
The mergeE step can be combined with the mergeV step (or any other step producing a Vertex) using the
Merge.outV and Merge.inV option modulators. These options can be used to "late-bind" the OUT and IN
vertices in the main merge argument and in the onCreate argument:
gremlin> g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby']).as('Toby').
mergeV([(T.id):2,(T.label):'Dog',name:'Brandy']).as('Brandy').
mergeE([(T.label):'Sibling',created:'2022-02-07',(from):Merge.outV,(to):Merge.inV]).
option(Merge.outV, select('Toby')).
option(Merge.inV, select('Brandy'))
==>e[2][1-Sibling->2]
gremlin> g.E().elementMap()
==>[id:2,label:Sibling,IN:[id:2,label:Dog],OUT:[id:1,label:Dog],created:2022-02-07]
g.mergeV([(T.id):1,(T.label):'Dog',name:'Toby']).as('Toby').
mergeV([(T.id):2,(T.label):'Dog',name:'Brandy']).as('Brandy').
mergeE([(T.label):'Sibling',created:'2022-02-07',(from):Merge.outV,(to):Merge.inV]).
option(Merge.outV, select('Toby')).
option(Merge.inV, select('Brandy'))
g.E().elementMap()
The Merge.outV and Merge.inV tokens can be used as placeholders for values for Direction.OUT and Direction.IN
respectively in the mergeE arguments. These options can produce Vertices, as in the example above, or they can
specify Maps, which will be used to search for Vertices in the graph. This is useful when the exact T.id of
the from/to vertices is not known in advance:
gremlin> g.mergeV([(T.label):'Dog',name:'Toby'])
==>v[0]
gremlin> g.mergeV([(T.label):'Dog',name:'Brandy'])
==>v[2]
gremlin> g.mergeE([(T.label):'Sibling',created:'2022-02-07',(from):Merge.outV,(to):Merge.inV]).
option(Merge.outV, [(T.label):'Dog',name:'Toby']).
option(Merge.inV, [(T.label):'Dog',name:'Brandy'])
==>e[4][0-Sibling->2]
gremlin> g.E().elementMap()
==>[id:4,label:Sibling,IN:[id:2,label:Dog],OUT:[id:0,label:Dog],created:2022-02-07]
g.mergeV([(T.label):'Dog',name:'Toby'])
g.mergeV([(T.label):'Dog',name:'Brandy'])
g.mergeE([(T.label):'Sibling',created:'2022-02-07',(from):Merge.outV,(to):Merge.inV]).
option(Merge.outV, [(T.label):'Dog',name:'Toby']).
option(Merge.inV, [(T.label):'Dog',name:'Brandy'])
g.E().elementMap()
Additional References
MergeVertex Step
The mergeV() -step is used to add vertices and their properties to a graph in a "create
if not exist" fashion. The mergeV() step can also be used to find vertices matching a given
pattern. The input passed to mergeV() can be either a Map, or a child Traversal that
produces a Map.
|
Note
|
There is a corresponding mergeE() step that can be used when creating edges.
|
Additionally, option() modulators may be combined with mergeV() to take action depending on
whether a vertex was created, or already existed. There are various ways mergeV() can
be used. The simplest being to provide a single Map of keys and values as a parameter. A T.id
and a T.label may also be provided but this is optional. The mergeV() step can be used directly
from the GraphTraversalSource - g, or in the middle of a traversal. For a match with an
existing vertex to occur, all values in the Map must exist on a vertex; otherwise, a new
vertex will be created. The examples that follow show how mergeV() can be used to add some
dogs to the graph.
gremlin> g.mergeV([name: 'Brandy']) //// (1)
==>v[0]
gremlin> g.V().has('name','Brandy')
==>v[0]
gremlin> g.mergeV([(T.label):'Dog',name:'Scamp', age:12]) //// (2)
==>v[2]
gremlin> g.V().hasLabel('Dog').valueMap()
==>[name:[Scamp],age:[12]]
gremlin> g.mergeV([(T.id):300, (T.label):'Dog', name:'Toby', age:10]) //// (3)
==>v[300]
gremlin> g.V().hasLabel('Dog').valueMap().with(WithOptions.tokens)
==>[id:2,label:Dog,name:[Scamp],age:[12]]
==>[id:300,label:Dog,name:[Toby],age:[10]]
g.mergeV([name: 'Brandy']) //// (1)
g.V().has('name','Brandy')
g.mergeV([(T.label):'Dog',name:'Scamp', age:12]) //// (2)
g.V().hasLabel('Dog').valueMap()
g.mergeV([(T.id):300, (T.label):'Dog', name:'Toby', age:10]) //// (3)
g.V().hasLabel('Dog').valueMap().with(WithOptions.tokens)
-
Create a vertex for Brandy as no other matching ones exist yet.
-
Create a vertex for Scamp and also add a Dog label his age.
-
Create a vertex for Toby with an
T.idof 300.
|
Note
|
The example above is written with gremlin-groovy and evaluated in Gremlin Console as a Groovy script thus
allowing Groovy syntax for initializing a Map.
|
If a vertex already exists that matches the map passed to mergeV(), the existing
vertex will be returned, otherwise a new one will be created. In this way, mergeV()
provides "get or create" semantics.
gremlin> g.mergeV([name: 'Brandy']) //// (1)
==>v[0]
g.mergeV([name: 'Brandy']) //1
-
A vertex for Brandy already exists so return it. A new one is not created.
It’s important to note that every key/value pair passed to mergeV() must already exist on
one or more vertices for there to be a match. If a match is found, the vertex, or
vertices, representing that match will be returned. If a vertex representing a dog called
Brandy already exists, but it does not have an "age" property, the mergeV() below will not
find a match and a new vertex will be created.
gremlin> g.addV('Dog').property('name','Brandy') //// (1)
==>v[0]
gremlin> g.mergeV([(T.label):'Dog',name:'Brandy',age:13]) //// (2)
==>v[2]
g.addV('Dog').property('name','Brandy') //// (1)
g.mergeV([(T.label):'Dog',name:'Brandy',age:13]) //2
-
Create a vertex for Brandy with no age property.
-
A new vertex is created as there is no exact match to any existing vertices.
A common scenario is to search for a vertex with a known T.id and if it exists return that
vertex. If it does not exist, create it. As we have seen, one way to do this is to pass
the T.id and all properties directly to mergeV(). Another is to use Merge.onCreate. Note
that the Map specified for Match.onCreate does not need to include the T.id already present
in the original search. The values provided to the mergeV() Map are inherited by the onCreate
action and combined with the Map provided to Merge.onCreate. Overrides of the T.id or T.label
in the onCreate Map are prohibited.
gremlin> g.mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10])
==>v[300]
g.mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10])
To take specific action when the vertex already exists, Merge.onMatch can be used. The
second parameter to the option step can be either a Map whose values are used to update
the vertex or another Gremlin traversal that generates a Map.
|
Note
|
If mergeV() is given an empty Map; such as mergeV([:]), it will match, and
return, every vertex in the graph. This is the same behavior seen with V([]).
|
gremlin> g.mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10]). //// (1)
option(Merge.onMatch,[age:11]) //// (2)
==>v[300]
gremlin> g.withSideEffect('new-data',[age:11]).
mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10]).
option(Merge.onMatch,select('new-data')) //// (3)
==>v[300]
gremlin> g.V(300).valueMap().with(WithOptions.tokens)
==>[id:300,label:Dog,name:[Toby],age:[11]]
g.mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10]). //// (1)
option(Merge.onMatch,[age:11]) //// (2)
g.withSideEffect('new-data',[age:11]).
mergeV([(T.id):300]).
option(Merge.onCreate,[(T.label):'Dog', name:'Toby', age:10]).
option(Merge.onMatch,select('new-data')) //// (3)
g.V(300).valueMap().with(WithOptions.tokens)
-
If no match found create the vertex using these values.
-
If a match is found, change the age property value.
-
Change the age property by selecting from the
new-datamap.
It is sometimes helpful to incorporate fail() step into scenarios where there is a need to stop the traversal
for one event or the other:
gremlin> g.mergeV([(T.id): 1]).
......1> option(onCreate, fail("vertex did not exist")).
......2> option(onMatch, [modified: 2022])
fail() Step Triggered
======================================================================================================================================================================
Message > vertex did not exist
Traverser> false
Bulk > 1
Traversal> fail("vertex did not exist")
Parent > TinkerMergeVertexStep [mergeV([(T.id):((int) 1)]).option(Merge.onCreate,__.fail("vertex did not exist")).option(Merge.onMatch,[("modified"):((int) 2022)])]
Metadata > {}
======================================================================================================================================================================
When working with multi-properties, there are two ways to specify them for mergeV(). First, you can specify them
individually using a CardinalityValue as the value in the Map. The CardinalityValue allows you to specify the
value as well as the Cardinality for that value. Note that it is only possible to specify one value with this syntax
even if you are using set or list.
gremlin> g.mergeV([(T.label):'Dog', name:'Max']). //// (1)
option(onCreate, [alias: set('Maximus')]). //// (2)
property(set,'alias','Maxamillion') //// (3)
==>v[0]
gremlin> g.V().has('name','Max').valueMap().with(WithOptions.tokens)
==>[id:0,label:Dog,name:[Max],alias:[Maximus,Maxamillion]]
g.mergeV([(T.label):'Dog', name:'Max']). //// (1)
option(onCreate, [alias: set('Maximus')]). //// (2)
property(set,'alias','Maxamillion') //// (3)
g.V().has('name','Max').valueMap().with(WithOptions.tokens)
-
Find or create a vertex for Max.
-
If Max is not found then add an alias of
setcardinality. -
Whether Max was found or created, add another alias with
setcardinality.
The second option is to specify Cardinality for the entire range of values as follows:
gremlin> g.mergeV([(T.label):'Dog', name:'Max']).
option(onCreate, [alias: 'Maximus', city: 'Boston'], set) //// (1)
==>v[0]
gremlin> g.mergeV([(T.label):'Dog', name:'Max']).
option(onCreate, [alias: 'Maximus', city: single('Boston')], set) //// (2)
==>v[0]
g.mergeV([(T.label):'Dog', name:'Max']).
option(onCreate, [alias: 'Maximus', city: 'Boston'], set) //// (1)
g.mergeV([(T.label):'Dog', name:'Max']).
option(onCreate, [alias: 'Maximus', city: single('Boston')], set) //2
-
If Max is created then set the alias and city with cardinality of
set. -
If Max is created then set the alias with cardinality of
setand city with cardinalitysingle.
More than one vertex can be created by a single mergeV() operation. This is done by
injecting a List of Map objects into the traversal and letting them stream into the mergeV()
step.
gremlin> maps = [[(T.label) : 'Dog', name: 'Toby' , breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Brandy', breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Scamp' , breed: 'King Charles Spaniel'],
[(T.label) : 'Dog', name: 'Shadow', breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Rocket', breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Dax' , breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Baxter', breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Zoe' , breed: 'Corgi'],
[(T.label) : 'Dog', name: 'Pixel' , breed: 'Mixed']]
==>[label:Dog,name:Toby,breed:Golden Retriever]
==>[label:Dog,name:Brandy,breed:Golden Retriever]
==>[label:Dog,name:Scamp,breed:King Charles Spaniel]
==>[label:Dog,name:Shadow,breed:Mixed]
==>[label:Dog,name:Rocket,breed:Golden Retriever]
==>[label:Dog,name:Dax,breed:Mixed]
==>[label:Dog,name:Baxter,breed:Mixed]
==>[label:Dog,name:Zoe,breed:Corgi]
==>[label:Dog,name:Pixel,breed:Mixed]
gremlin> g.inject(maps).unfold().mergeV()
==>v[0]
==>v[3]
==>v[6]
==>v[9]
==>v[12]
==>v[15]
==>v[18]
==>v[21]
==>v[24]
gremlin> g.V().hasLabel('Dog').valueMap().with(WithOptions.tokens)
==>[id:0,label:Dog,name:[Toby],breed:[Golden Retriever]]
==>[id:18,label:Dog,name:[Baxter],breed:[Mixed]]
==>[id:3,label:Dog,name:[Brandy],breed:[Golden Retriever]]
==>[id:21,label:Dog,name:[Zoe],breed:[Corgi]]
==>[id:6,label:Dog,name:[Scamp],breed:[King Charles Spaniel]]
==>[id:24,label:Dog,name:[Pixel],breed:[Mixed]]
==>[id:9,label:Dog,name:[Shadow],breed:[Mixed]]
==>[id:12,label:Dog,name:[Rocket],breed:[Golden Retriever]]
==>[id:15,label:Dog,name:[Dax],breed:[Mixed]]
maps = [[(T.label) : 'Dog', name: 'Toby' , breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Brandy', breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Scamp' , breed: 'King Charles Spaniel'],
[(T.label) : 'Dog', name: 'Shadow', breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Rocket', breed: 'Golden Retriever'],
[(T.label) : 'Dog', name: 'Dax' , breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Baxter', breed: 'Mixed'],
[(T.label) : 'Dog', name: 'Zoe' , breed: 'Corgi'],
[(T.label) : 'Dog', name: 'Pixel' , breed: 'Mixed']]
g.inject(maps).unfold().mergeV()
g.V().hasLabel('Dog').valueMap().with(WithOptions.tokens)
Another useful pattern that can be used with mergeV() involves putting multiple maps in a
list and selecting different maps based on the action being taken. The examples below use
a list containing three maps. The first containing just the ID to be searched for. The
second map contains all the information to use when the vertex is created. The third map
contains additional information that will be applied if an existing vertex is found.
gremlin> g.inject([[(T.id):400],[(T.label):'Dog',name:'Pixel',age:1],[updated:'2022-02-1']]).as('m').
mergeV(select('m').limit(local,1).unfold()). //// (1)
option(Merge.onCreate, select('m').range(local,1,2).unfold()). //// (2)
option(Merge.onMatch, select('m').tail(local).unfold()) //// (3)
==>v[400]
gremlin> g.V(400).valueMap().with(WithOptions.tokens)
==>[id:400,label:Dog,name:[Pixel],age:[1]]
gremlin> g.inject([[(T.id):400],[(T.label):'Dog',name:'Pixel',age:1],[updated:'2022-02-1']]).as('m').
mergeV(select('m').limit(local,1).unfold()).
option(Merge.onCreate, select('m').range(local,1,2).unfold()).
option(Merge.onMatch, select('m').tail(local).unfold()) //// (4)
==>v[400]
gremlin> g.V(400).valueMap().with(WithOptions.tokens) //// (5)
==>[id:400,label:Dog,name:[Pixel],updated:[2022-02-1],age:[1]]
g.inject([[(T.id):400],[(T.label):'Dog',name:'Pixel',age:1],[updated:'2022-02-1']]).as('m').
mergeV(select('m').limit(local,1).unfold()). //// (1)
option(Merge.onCreate, select('m').range(local,1,2).unfold()). //// (2)
option(Merge.onMatch, select('m').tail(local).unfold()) //// (3)
g.V(400).valueMap().with(WithOptions.tokens)
g.inject([[(T.id):400],[(T.label):'Dog',name:'Pixel',age:1],[updated:'2022-02-1']]).as('m').
mergeV(select('m').limit(local,1).unfold()).
option(Merge.onCreate, select('m').range(local,1,2).unfold()).
option(Merge.onMatch, select('m').tail(local).unfold()) //// (4)
g.V(400).valueMap().with(WithOptions.tokens) //5
-
Use the first map to search for a vertex with an ID of 400.
-
If the vertex was not found, use the second map to create it.
-
If the vertex was found, add an
updatedproperty. -
Pixel exists now, so we will take this option.
-
The
updatedproperty has now been added.
Additional References
Min Step
The min()-step (map) operates on a stream of comparable objects and determines which is the first object according
to its natural order in the stream.
gremlin> g.V().values('age').min()
==>27
gremlin> g.V().repeat(both()).times(3).values('age').min()
==>27
gremlin> g.V().values('name').min()
==>josh
g.V().values('age').min()
g.V().repeat(both()).times(3).values('age').min()
g.V().values('name').min()
When called as min(local) it determines the minimum value of the current, local object (not the objects in the
traversal stream). This works for Collection and Comparable-type objects.
gremlin> g.V().values('age').fold().min(local)
==>27
g.V().values('age').fold().min(local)
When there are null values being evaluated the null objects are ignored, but if all values are recognized as null
the return value is null.
gremlin> g.inject(null,10, 9, null).min()
==>9
gremlin> g.inject([null,null,null]).min(local)
==>null
g.inject(null,10, 9, null).min()
g.inject([null,null,null]).min(local)
Additional References
None Step
It is possible to filter list traversers using none()-step (filter). Every item in the list will be tested against
the supplied predicate and if none of the items pass then the traverser is passed along the stream, otherwise it is
filtered. Empty lists are passed along but null or non-iterable traversers are filtered out.
|
Note
|
Prior to release 3.8.0, none() was a traversal discarding step primarily used by iterate().
This step has since been renamed to discard()
|
gremlin> g.V().values('age').fold().none(gt(25)) //// (1)
g.V().values('age').fold().none(gt(25)) //1
-
Return the list of ages only if no one’s age is greater than 25.
Additional References
Not Step
The not()-step (filter) removes objects from the traversal stream when the traversal provided as an argument
returns an object.
|
Groovy
|
The term |
|
Python
|
The term |
gremlin> g.V().not(hasLabel('person')).elementMap()
==>[id:3,label:software,name:lop,lang:java]
==>[id:5,label:software,name:ripple,lang:java]
gremlin> g.V().hasLabel('person').
not(out('created').count().is(gt(1))).values('name') //// (1)
==>marko
==>vadas
==>peter
g.V().not(hasLabel('person')).elementMap()
g.V().hasLabel('person').
not(out('created').count().is(gt(1))).values('name') //1
-
josh created two projects and vadas none
Additional References
Option Step
Additional References
Optional Step
The optional()-step (branch/flatMap) returns the result of the specified traversal if it yields a result else it returns the calling
element, i.e. the identity().
gremlin> g.V(2).optional(out('knows')) //// (1)
==>v[2]
gremlin> g.V(2).optional(__.in('knows')) //// (2)
==>v[1]
g.V(2).optional(out('knows')) //// (1)
g.V(2).optional(__.in('knows')) //2
-
vadas does not have an outgoing knows-edge so vadas is returned.
-
vadas does have an incoming knows-edge so marko is returned.
optional is particularly useful for lifting entire graphs when used in conjunction with path or tree.
gremlin> g.V().hasLabel('person').optional(out('knows').optional(out('created'))).path() //// (1)
==>[v[1],v[2]]
==>[v[1],v[4],v[5]]
==>[v[1],v[4],v[3]]
==>[v[2]]
==>[v[4]]
==>[v[6]]
g.V().hasLabel('person').optional(out('knows').optional(out('created'))).path() //1
-
Returns the paths of everybody followed by who they know followed by what they created.
Additional References
Or Step
The or()-step ensures that at least one of the provided traversals yield a result (filter). Please see
and() for and-semantics.
|
Python
|
The term |
gremlin> g.V().or(
__.outE('created'),
__.inE('created').count().is(gt(1))).
values('name')
==>marko
==>lop
==>josh
==>peter
g.V().or(
__.outE('created'),
__.inE('created').count().is(gt(1))).
values('name')
The or()-step can take an arbitrary number of traversals. At least one of the traversals must produce at least one
output for the original traverser to pass to the next step.
An infix notation can be used as well.
gremlin> g.V().where(outE('created').or().outE('knows')).values('name')
==>marko
==>josh
==>peter
g.V().where(outE('created').or().outE('knows')).values('name')
Additional References
Order Step
When the objects of the traversal stream need to be sorted, order()-step (map) can be leveraged.
gremlin> g.V().values('name').order()
==>josh
==>lop
==>marko
==>peter
==>ripple
==>vadas
gremlin> g.V().values('name').order().by(desc)
==>vadas
==>ripple
==>peter
==>marko
==>lop
==>josh
gremlin> g.V().hasLabel('person').order().by('age', asc).values('name')
==>vadas
==>marko
==>josh
==>peter
g.V().values('name').order()
g.V().values('name').order().by(desc)
g.V().hasLabel('person').order().by('age', asc).values('name')
One of the most traversed objects in a traversal is an Element. An element can have properties associated with it
(i.e. key/value pairs). In many situations, it is desirable to sort an element traversal stream according to a
comparison of their properties.
gremlin> g.V().values('name')
==>marko
==>vadas
==>lop
==>josh
==>ripple
==>peter
gremlin> g.V().order().by('name',asc).values('name')
==>josh
==>lop
==>marko
==>peter
==>ripple
==>vadas
gremlin> g.V().order().by('name',desc).values('name')
==>vadas
==>ripple
==>peter
==>marko
==>lop
==>josh
gremlin> g.V().both().order().by('age') //// (1)
==>v[2]
==>v[1]
==>v[1]
==>v[1]
==>v[4]
==>v[4]
==>v[4]
==>v[6]
g.V().values('name')
g.V().order().by('name',asc).values('name')
g.V().order().by('name',desc).values('name')
g.V().both().order().by('age') //1
-
The "age" property is not productive for all vertices and therefore those values are filtered.
The order()-step allows the user to provide an arbitrary number of comparators for primary, secondary, etc. sorting.
In the example below, the primary ordering is based on the outgoing created-edge count. The secondary ordering is
based on the age of the person.
gremlin> g.V().hasLabel('person').order().by(outE('created').count(), asc).
by('age', asc).values('name')
==>vadas
==>marko
==>peter
==>josh
gremlin> g.V().hasLabel('person').order().by(outE('created').count(), asc).
by('age', desc).values('name')
==>vadas
==>peter
==>marko
==>josh
g.V().hasLabel('person').order().by(outE('created').count(), asc).
by('age', asc).values('name')
g.V().hasLabel('person').order().by(outE('created').count(), asc).
by('age', desc).values('name')
Randomizing the order of the traversers at a particular point in the traversal is possible with Order.shuffle.
gremlin> g.V().hasLabel('person').order().by(shuffle)
==>v[2]
==>v[6]
==>v[1]
==>v[4]
gremlin> g.V().hasLabel('person').order().by(shuffle)
==>v[4]
==>v[6]
==>v[2]
==>v[1]
g.V().hasLabel('person').order().by(shuffle)
g.V().hasLabel('person').order().by(shuffle)
It is possible to use order(local) to order the current local object and not the entire traversal stream. This works for
Collection- and Map-type objects. For any other object, the object is returned unchanged.
gremlin> g.V().values('age').fold().order(local).by(desc) //// (1)
==>[35,32,29,27]
gremlin> g.V().values('age').order(local).by(desc) //// (2)
==>29
==>27
==>32
==>35
gremlin> g.V().groupCount().by(inE().count()).order(local).by(values, desc) //// (3)
==>[1:3,0:2,3:1]
gremlin> g.V().groupCount().by(inE().count()).order(local).by(keys, asc) //// (4)
==>[0:2,1:3,3:1]
g.V().values('age').fold().order(local).by(desc) //// (1)
g.V().values('age').order(local).by(desc) //// (2)
g.V().groupCount().by(inE().count()).order(local).by(values, desc) //// (3)
g.V().groupCount().by(inE().count()).order(local).by(keys, asc) //4
-
The ages are gathered into a list and then that list is sorted in decreasing order.
-
The ages are not gathered and thus
order(local)is "ordering" single integers and thus, does nothing. -
The
groupCount()map is ordered by its values in decreasing order. -
The
groupCount()map is ordered by its keys in increasing order.
|
Note
|
The values and keys enums are from Column which is used to select "columns" from a Map, Map.Entry, or Path.
|
If a property key does not exist, then it will be treated as null which will sort it first for Order.asc and last
for Order.desc.
gremlin> g.V().order().by("age").elementMap()
==>[id:2,label:person,name:vadas,age:27]
==>[id:1,label:person,name:marko,age:29]
==>[id:4,label:person,name:josh,age:32]
==>[id:6,label:person,name:peter,age:35]
g.V().order().by("age").elementMap()
|
Note
|
Prior to version 3.3.4, ordering was defined by Order.incr for ascending order and Order.decr for descending
order. Those tokens were deprecated and eventually removed in 3.5.0.
|
Additional References
PageRank Step
The pageRank()-step (map/sideEffect) calculates PageRank using
PageRankVertexProgram.
|
Important
|
The pageRank()-step is a VertexComputing-step and as such, can only be used against a graph that
supports GraphComputer (OLAP).
|
gremlin> g = traversal().with(graph).withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().pageRank().with(PageRank.propertyName, 'friendRank').values('pageRank')
gremlin> g.V().hasLabel('person').
pageRank().
with(PageRank.edges, __.outE('knows')).
with(PageRank.propertyName, 'friendRank').
order().by('friendRank',desc).
elementMap('name','friendRank')
==>[id:1,label:person,friendRank:0.5839416733381598,name:marko]
==>[id:2,label:person,friendRank:0.8321166533236799,name:vadas]
==>[id:4,label:person,friendRank:0.8321166533236799,name:josh]
==>[id:6,label:person,friendRank:0.5839416733381598,name:peter]
g = traversal().with(graph).withComputer()
g.V().pageRank().with(PageRank.propertyName, 'friendRank').values('pageRank')
g.V().hasLabel('person').
pageRank().
with(PageRank.edges, __.outE('knows')).
with(PageRank.propertyName, 'friendRank').
order().by('friendRank',desc).
elementMap('name','friendRank')
Note the use of the with() modulating step which provides configuration options to the algorithm. It takes
configuration keys from the PageRank and is automatically imported to the Gremlin Console.
The explain()-step can be used to understand how the traversal is compiled into multiple
GraphComputer jobs.
gremlin> g = traversal().with(graph).withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().hasLabel('person').
pageRank().
with(PageRank.edges, __.outE('knows')).
with(PageRank.propertyName, 'friendRank').
order().by('friendRank',desc).
elementMap('name','friendRank').explain()
==>Traversal Explanation
=============================================================================================================================================================================================================================================
Original Traversal [GraphStep(vertex,[]), HasStep([~label.eq(person)]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), OrderGlobalStep([[value(friendRank), desc]]), ElementMa
pStep([name, friendRank])]
ConnectiveStrategy [D] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), OrderGlobalStep([[value(friendRank), desc]]), ElementMa
pStep([name, friendRank])]
VertexProgramStrategy [D] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
IdentityRemovalStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
MatchPredicateStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
FilterRankingStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
CountStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
EarlyLimitStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
PathProcessorStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
InlineFilterStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
IncidentToAdjacentStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
AdjacentToIncidentStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
ByModulatorOptimizationStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
RepeatUnrollStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
PathRetractionStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
LazyBarrierStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
OrderLimitStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
MessagePassingReductionStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
GValueReductionStrategy [O] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
TinkerGraphCountStrategy [P] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
TinkerGraphStepStrategy [P] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
ProfileStrategy [F] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
ComputerVerificationStrategy [V] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
StandardVerificationStrategy [V] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
ComputerFinalizationStrategy [T] [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
Final Traversal [TraversalVertexProgramStep([GraphStep(vertex,[]), HasStep([~label.eq(person)])],graphfilter[none]), PageRankVertexProgramStep([VertexStep(OUT,[knows],edge)],friendRank,20,graphfilter[none]), Travers
alVertexProgramStep([OrderGlobalStep([[value(friendRank), desc]]), ElementMapStep([name, friendRank])],graphfilter[none]), ComputerResultStep]
g = traversal().with(graph).withComputer()
g.V().hasLabel('person').
pageRank().
with(PageRank.edges, __.outE('knows')).
with(PageRank.propertyName, 'friendRank').
order().by('friendRank',desc).
elementMap('name','friendRank').explain()
Additional References
Path Step
A traverser is transformed as it moves through a series of steps within a traversal. The history of the traverser is
realized by examining its path with path()-step (map).
gremlin> g.V().out().out().values('name')
==>ripple
==>lop
gremlin> g.V().out().out().values('name').path()
==>[v[1],v[4],v[5],ripple]
==>[v[1],v[4],v[3],lop]
gremlin> g.V().both().path().by('age') //// (1)
==>[29,27]
==>[29,32]
==>[27,29]
==>[32,29]
g.V().out().out().values('name')
g.V().out().out().values('name').path()
g.V().both().path().by('age') //1
-
The "age" property is not productive for all vertices and therefore those values are filtered.
If edges are required in the path, then be sure to traverse those edges explicitly.
gremlin> g.V().outE().inV().outE().inV().path()
==>[v[1],e[8][1-knows->4],v[4],e[10][4-created->5],v[5]]
==>[v[1],e[8][1-knows->4],v[4],e[11][4-created->3],v[3]]
g.V().outE().inV().outE().inV().path()
It is possible to post-process the elements of the path in a round-robin fashion via by().
gremlin> g.V().out().out().path().by('name').by('age')
==>[marko,32,ripple]
==>[marko,32,lop]
g.V().out().out().path().by('name').by('age')
Finally, because by()-based post-processing, nothing prevents triggering yet another traversal. In the traversal
below, for each element of the path traversed thus far, if its a person (as determined by having an age-property),
then get all of their creations, else if its a creation, get all the people that created it.
gremlin> g.V().out().out().path().by(
choose(hasLabel('person'),
out('created').values('name'),
__.in('created').values('name')).fold())
==>[[lop],[ripple,lop],[josh]]
==>[[lop],[ripple,lop],[marko,josh,peter]]
g.V().out().out().path().by(
choose(hasLabel('person'),
out('created').values('name'),
__.in('created').values('name')).fold())
gremlin> g.V().has('person','name','vadas').as('e').
in('knows').
out('knows').where(neq('e')).
path().by('name') //// (1)
==>[vadas,marko,josh]
gremlin> g.V().has('person','name','vadas').as('e').
in('knows').as('m').
out('knows').where(neq('e')).
path().to('m').by('name') //// (2)
==>[vadas,marko]
gremlin> g.V().has('person','name','vadas').as('e').
in('knows').as('m').
out('knows').where(neq('e')).
path().from('m').by('name') //// (3)
==>[marko,josh]
g.V().has('person','name','vadas').as('e').
in('knows').
out('knows').where(neq('e')).
path().by('name') //// (1)
g.V().has('person','name','vadas').as('e').
in('knows').as('m').
out('knows').where(neq('e')).
path().to('m').by('name') //// (2)
g.V().has('person','name','vadas').as('e').
in('knows').as('m').
out('knows').where(neq('e')).
path().from('m').by('name') //3
-
Obtain the full path from vadas to josh.
-
Save the middle node, marko, and use the
to()modulator to show only the path from vadas to marko -
Use the
from()mdoulator to show only the path from marko to josh
|
Warning
|
Generating path information is expensive as the history of the traverser is stored into a Java list. With
numerous traversers, there are numerous lists. Moreover, in an OLAP GraphComputer environment
this becomes exceedingly prohibitive as there are traversers emanating from all vertices in the graph in parallel.
In OLAP there are optimizations provided for traverser populations, but when paths are calculated (and each traverser
is unique due to its history), then these optimizations are no longer possible.
|
Path Data Structure
The Path data structure is an ordered list of objects, where each object is associated to a Set<String> of
labels. An example is presented below to demonstrate both the Path API as well as how a traversal yields labeled paths.
gremlin> path = g.V(1).as('a').has('name').as('b').
out('knows').out('created').as('c').
has('name','ripple').values('name').as('d').
identity().as('e').path().next()
==>v[1]
==>v[4]
==>v[5]
==>ripple
gremlin> path.size()
==>4
gremlin> path.objects()
==>v[1]
==>v[4]
==>v[5]
==>ripple
gremlin> path.labels()
==>[b,a]
==>[]
==>[c]
==>[d,e]
gremlin> path.a
==>v[1]
gremlin> path.b
==>v[1]
gremlin> path.c
==>v[5]
gremlin> path.d == path.e
==>true
path = g.V(1).as('a').has('name').as('b').
out('knows').out('created').as('c').
has('name','ripple').values('name').as('d').
identity().as('e').path().next()
path.size()
path.objects()
path.labels()
path.a
path.b
path.c
path.d == path.e
Additional References
PeerPressure Step
The peerPressure()-step (map/sideEffect) clusters vertices using PeerPressureVertexProgram.
|
Important
|
The peerPressure()-step is a VertexComputing-step and as such, can only be used against a graph that supports GraphComputer (OLAP).
|
gremlin> g = traversal().with(graph).withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().peerPressure().with(PeerPressure.propertyName, 'cluster').values('cluster')
==>1
==>1
==>1
==>1
==>1
==>6
gremlin> g.V().hasLabel('person').
peerPressure().
with(PeerPressure.propertyName, 'cluster').
group().
by('cluster').
by('name')
==>[1:[vadas,marko,josh],6:[peter]]
g = traversal().with(graph).withComputer()
g.V().peerPressure().with(PeerPressure.propertyName, 'cluster').values('cluster')
g.V().hasLabel('person').
peerPressure().
with(PeerPressure.propertyName, 'cluster').
group().
by('cluster').
by('name')
Note the use of the with() modulating step which provides configuration options to the algorithm. It takes
configuration keys from the PeerPressure class and is automatically imported to the Gremlin Console.
Additional References
Product Step
The product()-step (map) calculates the cartesian product between the incoming list traverser and the provided list
argument. This step only expects list data (array or Iterable) and will throw an IllegalArgumentException if any
other type is encountered (including null).
gremlin> g.V().values("name").fold().product(["james","jen"])
==>[[marko,james],[marko,jen],[vadas,james],[vadas,jen],[lop,james],[lop,jen],[josh,james],[josh,jen],[ripple,james],[ripple,jen],[peter,james],[peter,jen]]
gremlin> g.V().values("name").fold().product(__.V().has("age").limit(1).values("age").fold())
==>[[marko,29],[vadas,29],[lop,29],[josh,29],[ripple,29],[peter,29]]
g.V().values("name").fold().product(["james","jen"])
g.V().values("name").fold().product(__.V().has("age").limit(1).values("age").fold())
Additional References
Profile Step
The profile()-step (sideEffect) exists to allow developers to profile their traversals to determine statistical
information like step runtime, counts, etc.
|
Warning
|
Profiling a Traversal will impede the Traversal’s performance. This overhead is mostly excluded from the profile results, but durations are not exact. Thus, durations are best considered in relation to each other. |
gremlin> g.V().out('created').repeat(both()).times(3).hasLabel('person').values('age').sum().profile()
==>Traversal Metrics
Step Count Traversers Time (ms) % Dur
=============================================================================================================
TinkerGraphStep(vertex,[]) 6 6 0.043 17.44
VertexStep(OUT,[created],vertex) 4 4 0.026 10.84
NoOpBarrierStep(2500) 4 2 0.019 7.72
VertexStep(BOTH,vertex) 10 4 0.010 4.21
NoOpBarrierStep(2500) 10 3 0.008 3.55
VertexStep(BOTH,vertex) 24 7 0.013 5.34
NoOpBarrierStep(2500) 24 5 0.011 4.51
VertexStep(BOTH,vertex) 58 11 0.013 5.26
NoOpBarrierStep(2500) 58 6 0.019 8.03
HasStep([~label.eq(person)]) 48 4 0.019 8.01
PropertiesStep([age],value) 48 4 0.014 5.87
SumGlobalStep 1 1 0.047 19.22
>TOTAL - - 0.248 -
g.V().out('created').repeat(both()).times(3).hasLabel('person').values('age').sum().profile()
The profile()-step generates a TraversalMetrics sideEffect object that contains the following information:
-
Step: A step within the traversal being profiled. -
Count: The number of represented traversers that passed through the step. -
Traversers: The number of traversers that passed through the step. -
Time (ms): The total time the step was actively executing its behavior. -
% Dur: The percentage of total time spent in the step.
It is important to understand the difference between "Count"
and "Traversers". Traversers can be merged and as such, when two traversers are "the same" they may be aggregated
into a single traverser. That new traverser has a Traverser.bulk() that is the sum of the two merged traverser
bulks. On the other hand, the Count represents the sum of all Traverser.bulk() results and thus, expresses the
number of "represented" (not enumerated) traversers. Traversers will always be less than or equal to Count.
For traversal compilation information, please see explain()-step.
Additional References
Project Step
The project()-step (map) projects the current object into a Map<String,Object> keyed by provided labels. It is similar
to select()-step, save that instead of retrieving and modulating historic traverser state, it modulates
the current state of the traverser.
gremlin> g.V().has('name','marko').
project('id', 'name', 'out', 'in').
by(id).
by('name').
by(outE().count()).
by(inE().count())
==>[id:1,name:marko,out:3,in:0]
gremlin> g.V().has('name','marko').
project('name', 'friendsNames').
by('name').
by(out('knows').values('name').fold())
==>[name:marko,friendsNames:[vadas,josh]]
gremlin> g.V().out('created').
project('a','b').
by('name').
by(__.in('created').count()).
order().by(select('b'),desc).
select('a')
==>lop
==>lop
==>lop
==>ripple
gremlin> g.V().project('n','a').by('name').by('age') //// (1)
==>[n:marko,a:29]
==>[n:vadas,a:27]
==>[n:lop]
==>[n:josh,a:32]
==>[n:ripple]
==>[n:peter,a:35]
g.V().has('name','marko').
project('id', 'name', 'out', 'in').
by(id).
by('name').
by(outE().count()).
by(inE().count())
g.V().has('name','marko').
project('name', 'friendsNames').
by('name').
by(out('knows').values('name').fold())
g.V().out('created').
project('a','b').
by('name').
by(__.in('created').count()).
order().by(select('b'),desc).
select('a')
g.V().project('n','a').by('name').by('age') //1
-
The "age" property is not productive for all vertices and therefore those values are filtered and the key not present in the
Map.
Additional References
Program Step
The program()-step (map/sideEffect) is the "lambda" step for GraphComputer jobs. The step takes a
VertexProgram as an argument and will process the incoming graph accordingly. Thus, the user
can create their own VertexProgram and have it execute within a traversal. The configuration provided to the
vertex program includes:
-
gremlin.vertexProgramStep.rootTraversalis a serialization of aPureTraversalform of the root traversal. -
gremlin.vertexProgramStep.stepIdis the step string id of theprogram()-step being executed.
The user supplied VertexProgram can leverage that information accordingly within their vertex program. Example uses
are provided below.
|
Warning
|
Developing a VertexProgram is for expert users. Moreover, developing one that can be used effectively within
a traversal requires yet more expertise. This information is recommended to advanced users with a deep understanding of the
mechanics of Gremlin OLAP (GraphComputer).
|
private TraverserSet<Object> haltedTraversers;
public void loadState(Graph graph, Configuration configuration) {
VertexProgram.super.loadState(graph, configuration);
this.traversal = PureTraversal.loadState(configuration, VertexProgramStep.ROOT_TRAVERSAL, graph);
this.programStep = new TraversalMatrix<>(this.traversal.get()).getStepById(configuration.getString(ProgramVertexProgramStep.STEP_ID));
// if the traversal sideEffects will be used in the computation, add them as memory compute keys
this.memoryComputeKeys.addAll(MemoryTraversalSideEffects.getMemoryComputeKeys(this.traversal.get()));
// if master-traversal traversers may be propagated, create a memory compute key
this.memoryComputeKeys.add(MemoryComputeKey.of(TraversalVertexProgram.HALTED_TRAVERSERS, Operator.addAll, false, false));
// returns an empty traverser set if there are no halted traversers
this.haltedTraversers = TraversalVertexProgram.loadHaltedTraversers(configuration);
}
public void storeState(Configuration configuration) {
VertexProgram.super.storeState(configuration);
// if halted traversers is null or empty, it does nothing
TraversalVertexProgram.storeHaltedTraversers(configuration, this.haltedTraversers);
}
public void setup(Memory memory) {
if(!this.haltedTraversers.isEmpty()) {
// do what you like with the halted master traversal traversers
}
// once used, no need to keep that information around (master)
this.haltedTraversers = null;
}
public void execute(Vertex vertex, Messenger messenger, Memory memory) {
// once used, no need to keep that information around (workers)
if(null != this.haltedTraversers)
this.haltedTraversers = null;
if(vertex.property(TraversalVertexProgram.HALTED_TRAVERSERS).isPresent()) {
// haltedTraversers in execute() represent worker-traversal traversers
// for example, from a traversal of the form g.V().out().program(...)
TraverserSet<Object> haltedTraversers = vertex.value(TraversalVertexProgram.HALTED_TRAVERSERS);
// create a new halted traverser set that can be used by the next OLAP job in the chain
// these are worker-traversers that are distributed throughout the graph
TraverserSet<Object> newHaltedTraversers = new TraverserSet<>();
haltedTraversers.forEach(traverser -> {
newHaltedTraversers.add(traverser.split(traverser.get().toString(), this.programStep));
});
vertex.property(VertexProperty.Cardinality.single, TraversalVertexProgram.HALTED_TRAVERSERS, newHaltedTraversers);
// it is possible to create master-traversers that are localized to the master traversal (this is how results are ultimately delivered back to the user)
memory.add(TraversalVertexProgram.HALTED_TRAVERSERS,
new TraverserSet<>(this.traversal().get().getTraverserGenerator().generate("an example", this.programStep, 1l)));
}
public boolean terminate(Memory memory) {
// the master-traversal will have halted traversers
assert memory.exists(TraversalVertexProgram.HALTED_TRAVERSERS);
TraverserSet<String> haltedTraversers = memory.get(TraversalVertexProgram.HALTED_TRAVERSERS);
// it will only have the traversers sent to the master traversal via memory
assert haltedTraversers.stream().map(Traverser::get).filter(s -> s.equals("an example")).findAny().isPresent();
// it will not contain the worker traversers distributed throughout the vertices
assert !haltedTraversers.stream().map(Traverser::get).filter(s -> !s.equals("an example")).findAny().isPresent();
return true;
}
|
Note
|
The test case ProgramTest in gremlin-test has an example vertex program called TestProgram that demonstrates
all the various ways in which traversal and traverser information is propagated within a vertex program and ultimately
usable by other vertex programs (including TraversalVertexProgram) down the line in an OLAP compute chain.
|
Finally, an example is provided using PageRankVertexProgram which doesn’t use pageRank()-step.
gremlin> g = traversal().with(graph).withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().hasLabel('person').
program(PageRankVertexProgram.build().property('rank').create(graph)).
order().by('rank', asc).
elementMap('name', 'rank')
==>[id:1,label:person,name:marko,rank:0.11375510357865541]
==>[id:2,label:person,name:vadas,rank:0.14598540152719106]
==>[id:4,label:person,name:josh,rank:0.14598540152719106]
==>[id:6,label:person,name:peter,rank:0.11375510357865541]
g = traversal().with(graph).withComputer()
g.V().hasLabel('person').
program(PageRankVertexProgram.build().property('rank').create(graph)).
order().by('rank', asc).
elementMap('name', 'rank')
Properties Step
The properties()-step (map) extracts properties from an Element in the traversal stream.
gremlin> g.V(1).properties()
==>vp[name->marko]
==>vp[location->san diego]
==>vp[location->santa cruz]
==>vp[location->brussels]
==>vp[location->santa fe]
gremlin> g.V(1).properties('location').valueMap()
==>[startTime:1997,endTime:2001]
==>[startTime:2001,endTime:2004]
==>[startTime:2004,endTime:2005]
==>[startTime:2005]
gremlin> g.V(1).properties('location').has('endTime').valueMap()
==>[startTime:1997,endTime:2001]
==>[startTime:2001,endTime:2004]
==>[startTime:2004,endTime:2005]
g.V(1).properties()
g.V(1).properties('location').valueMap()
g.V(1).properties('location').has('endTime').valueMap()
Additional References
Property Step
The property()-step is used to add properties to the elements of the graph (sideEffect). Unlike addV() and
addE(), property() is a full sideEffect step in that it does not return the property it created, but the element
that streamed into it. Moreover, if property() follows an addV() or addE(), then it is "folded" into the
previous step to enable vertex and edge creation with all its properties in one creation operation.
gremlin> g.V(1).property('country','usa')
==>v[1]
gremlin> g.V(1).property('city','santa fe').property('state','new mexico').valueMap()
==>[country:[usa],city:[santa fe],name:[marko],state:[new mexico],age:[29]]
gremlin> g.V(1).property(['city': 'santa fe', 'state': 'new mexico']) //// (1)
==>v[1]
gremlin> g.V(1).property(list,'age',35) //// (2)
==>v[1]
gremlin> g.V(1).property(list, ['city': 'santa fe', 'state': 'new mexico']) //// (3)
==>v[1]
gremlin> g.V(1).valueMap()
==>[country:[usa],city:[santa fe,santa fe],name:[marko],state:[new mexico,new mexico],age:[29,35]]
gremlin> g.V(1).property(list, ['age': single(36), 'city': 'wilmington', 'state': 'delaware']) //// (4)
==>v[1]
gremlin> g.V(1).valueMap()
==>[country:[usa],city:[santa fe,santa fe,wilmington],name:[marko],state:[new mexico,new mexico,delaware],age:[36]]
gremlin> g.V(1).property('friendWeight',outE('knows').values('weight').sum(),'acl','private') //// (5)
==>v[1]
gremlin> g.V(1).properties('friendWeight').valueMap() //// (6)
==>[acl:private]
gremlin> g.addV().property(T.label,'person').valueMap().with(WithOptions.tokens) //// (7)
==>[id:13,label:person]
gremlin> g.addV().property(null) //// (8)
==>v[14]
gremlin> g.addV().property(set, null)
==>v[15]
g.V(1).property('country','usa')
g.V(1).property('city','santa fe').property('state','new mexico').valueMap()
g.V(1).property(['city': 'santa fe', 'state': 'new mexico']) //// (1)
g.V(1).property(list,'age',35) //// (2)
g.V(1).property(list, ['city': 'santa fe', 'state': 'new mexico']) //// (3)
g.V(1).valueMap()
g.V(1).property(list, ['age': single(36), 'city': 'wilmington', 'state': 'delaware']) //// (4)
g.V(1).valueMap()
g.V(1).property('friendWeight',outE('knows').values('weight').sum(),'acl','private') //// (5)
g.V(1).properties('friendWeight').valueMap() //// (6)
g.addV().property(T.label,'person').valueMap().with(WithOptions.tokens) //// (7)
g.addV().property(null) //// (8)
g.addV().property(set, null)
-
Properties can also take a
Mapas an argument. -
For vertices, a cardinality can be provided for vertex properties.
-
If a cardinality is specified for a
Mapthen that cardinality will be used for all properties in the map. -
Assign the
Cardinalityindividually to override the specifiedlistor the default cardinality if not specified. -
It is possible to select the property value (as well as key) via a traversal.
-
For vertices, the
property()-step can add meta-properties. -
The label value can be specified as a property only at the time a vertex is added and if one is not specified in the addV()
-
If you pass a
nullvalue for the Map this will be treated as a no-op and the input will be returned
Additional References
PropertyMap Step
The propertiesMap()-step yields a Map representation of the properties of an element.
gremlin> g.V().propertyMap()
==>[name:[vp[name->marko]],age:[vp[age->29]]]
==>[name:[vp[name->vadas]],age:[vp[age->27]]]
==>[name:[vp[name->lop]],lang:[vp[lang->java]]]
==>[name:[vp[name->josh]],age:[vp[age->32]]]
==>[name:[vp[name->ripple]],lang:[vp[lang->java]]]
==>[name:[vp[name->peter]],age:[vp[age->35]]]
gremlin> g.V().propertyMap('age')
==>[age:[vp[age->29]]]
==>[age:[vp[age->27]]]
==>[]
==>[age:[vp[age->32]]]
==>[]
==>[age:[vp[age->35]]]
gremlin> g.V().propertyMap('age','blah')
==>[age:[vp[age->29]]]
==>[age:[vp[age->27]]]
==>[]
==>[age:[vp[age->32]]]
==>[]
==>[age:[vp[age->35]]]
gremlin> g.E().propertyMap()
==>[weight:p[weight->0.5]]
==>[weight:p[weight->1.0]]
==>[weight:p[weight->0.4]]
==>[weight:p[weight->1.0]]
==>[weight:p[weight->0.4]]
==>[weight:p[weight->0.2]]
g.V().propertyMap()
g.V().propertyMap('age')
g.V().propertyMap('age','blah')
g.E().propertyMap()
Additional References
Range Step
As traversers propagate through the traversal, it is possible to only allow a certain number of them to pass through
with range()-step (filter). When the low-end of the range is not met, objects are continued to be iterated. When
within the low (inclusive) and high (exclusive) range, traversers are emitted. When above the high range, the traversal
breaks out of iteration. Finally, the use of -1 on the high range will emit remaining traversers after the low range
begins.
gremlin> g.V().range(0,3)
==>v[1]
==>v[2]
==>v[3]
gremlin> g.V().range(1,3)
==>v[2]
==>v[3]
gremlin> g.V().range(1, -1)
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
gremlin> g.V().repeat(both()).times(1000000).emit().range(6,10)
==>v[1]
==>v[5]
==>v[3]
==>v[1]
g.V().range(0,3)
g.V().range(1,3)
g.V().range(1, -1)
g.V().repeat(both()).times(1000000).emit().range(6,10)
The range()-step can also be applied with Scope.local, in which case it operates on the incoming collection.
For example, it is possible to produce a Map<String, String> for each traversed path, but containing only the second
property value (the "b" step).
gremlin> g.V().as('a').out().as('b').in().as('c').select('a','b','c').by('name').range(local,1,2)
==>[b:lop]
==>[b:lop]
==>[b:lop]
==>[b:vadas]
==>[b:josh]
==>[b:ripple]
==>[b:lop]
==>[b:lop]
==>[b:lop]
==>[b:lop]
==>[b:lop]
==>[b:lop]
g.V().as('a').out().as('b').in().as('c').select('a','b','c').by('name').range(local,1,2)
The next example uses the The Crew toy data set. It produces a List<String> containing the
second and third location for each vertex.
gremlin> g.V().valueMap().select('location').range(local, 1, 3) //// (1)
==>[santa cruz,brussels]
==>[dulles,purcellville]
==>[baltimore,oakland]
==>[kaiserslautern,aachen]
gremlin> g.V().valueMap().select('location').range(local, 1, 2) //// (2)
==>[santa cruz]
==>[dulles]
==>[baltimore]
==>[kaiserslautern]
gremlin> g.V().valueMap().select('location').range(local, 1, 2).unfold() //// (3)
==>santa cruz
==>dulles
==>baltimore
==>kaiserslautern
g.V().valueMap().select('location').range(local, 1, 3) //// (1)
g.V().valueMap().select('location').range(local, 1, 2) //// (2)
g.V().valueMap().select('location').range(local, 1, 2).unfold() //3
-
List<String>for each vertex containing the second and third locations. -
List<String>for each vertex containing the second location. -
Stringfor each vertex containing the second location (useunfold()to extract single elements from singleton collections).
Additional References
Read Step
The read()-step is not really a "step" but a step modulator in that it modifies the functionality of the io()-step.
More specifically, it tells the io()-step that it is expected to use its configuration to read data from some
location. Please see the documentation for io()-step for more complete details on usage.
Additional References
Repeat Step
The repeat()-step (branch) is used for looping over a traversal given some break predicate. Below are some
examples of repeat()-step in action.
gremlin> g.V(1).repeat(out()).times(2).path().by('name') //// (1)
==>[marko,josh,ripple]
==>[marko,josh,lop]
gremlin> g.V().until(has('name','ripple')).
repeat(out()).path().by('name') //// (2)
==>[marko,josh,ripple]
==>[josh,ripple]
==>[ripple]
g.V(1).repeat(out()).times(2).path().by('name') //// (1)
g.V().until(has('name','ripple')).
repeat(out()).path().by('name') //2
-
do-while semantics stating to do
out()2 times. -
while-do semantics stating to break if the traverser is at a vertex named "ripple".
gremlin> graph = TinkerGraph.open()
==>tinkergraph[vertices:0 edges:0]
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> g.V().has('name','JAM').repeat(out('followedBy').limit(2)).times(3) //// (1)
==>v[15]
==>v[215]
gremlin> g.V().has('name','DRUMS').repeat(__.in('followedBy').range(1,3)).until(loops().is(2)) //// (2)
==>v[49]
==>v[175]
gremlin> g.V().has('name','HEY BO DIDDLEY').repeat(out('followedBy').skip(5)).times(2) //// (3)
graph = TinkerGraph.open()
g = traversal().with(graph)
g.io('data/grateful-dead.xml').read().iterate()
g.V().has('name','JAM').repeat(out('followedBy').limit(2)).times(3) //// (1)
g.V().has('name','DRUMS').repeat(__.in('followedBy').range(1,3)).until(loops().is(2)) //// (2)
g.V().has('name','HEY BO DIDDLEY').repeat(out('followedBy').skip(5)).times(2) //3
-
Starting from the song 'JAM' get 2 songs that have followed, looping 3 times.
-
Starting from the song 'DRUMS' get the 2nd and 3rd songs that have preceded, looping twice.
-
Starting from the song 'HEY BO DIDDLEY' get the songs that have followed, skipping the first 5 and looping twice.
|
Important
|
There are three modulators for repeat(): times(), until(), and emit(). The most straightforward is
times(), which indicates the number of times to execute the loop. Conditional loops can be executed using until().
If until() comes after repeat() it is do/while looping. If until() comes before repeat() it is while/do looping.
Emission of traversers from the loop are controlled with emit(). If emit() is placed after repeat(), it is evaluated
on the traversers leaving the repeat-traversal. If emit() is placed before repeat(), it is evaluated on the
traversers prior to entering the repeat-traversal.
|
The repeat()-step also supports an "emit predicate", where the predicate for an empty argument emit() is
true (i.e. emit() == emit{true}). With emit(), the traverser is split in two — the traverser exits the code
block as well as continues back within the code block (assuming until() holds true).
gremlin> g.V(1).repeat(out()).times(2).emit().path().by('name') //// (1)
==>[marko,lop]
==>[marko,vadas]
==>[marko,josh]
==>[marko,josh,ripple]
==>[marko,josh,lop]
gremlin> g.V(1).emit().repeat(out()).times(2).path().by('name') //// (2)
==>[marko]
==>[marko,lop]
==>[marko,vadas]
==>[marko,josh]
==>[marko,josh,ripple]
==>[marko,josh,lop]
g.V(1).repeat(out()).times(2).emit().path().by('name') //// (1)
g.V(1).emit().repeat(out()).times(2).path().by('name') //2
-
The
emit()comes afterrepeat()and thus, emission happens after therepeat()traversal is executed. Thus, no one vertex paths exist. -
The
emit()comes beforerepeat()and thus, emission happens prior to therepeat()traversal being executed. Thus, one vertex paths exist.
The emit()-modulator can take an arbitrary predicate.
gremlin> g.V(1).repeat(out()).times(2).emit(has('lang')).path().by('name')
==>[marko,lop]
==>[marko,josh,ripple]
==>[marko,josh,lop]
g.V(1).repeat(out()).times(2).emit(has('lang')).path().by('name')
gremlin> g.V(1).repeat(out()).times(2).emit().path().by('name')
==>[marko,lop]
==>[marko,vadas]
==>[marko,josh]
==>[marko,josh,ripple]
==>[marko,josh,lop]
g.V(1).repeat(out()).times(2).emit().path().by('name')
The first time through the repeat(), the vertices lop, vadas, and josh are seen. Given that loops==1, the
traverser repeats. However, because the emit-predicate is declared true, those vertices are emitted. The next time through
repeat(), the vertices traversed are ripple and lop (Josh’s created projects, as lop and vadas have no out edges).
Given that loops==2, the until-predicate fails and ripple and lop are emitted.
Therefore, the traverser has seen the vertices: lop, vadas, josh, ripple, and lop.
repeat()-steps may be nested inside each other or inside the emit() or until() predicates and they can also be 'named' by passing a string as the first parameter to repeat(). The loop counter of a named repeat step can be accessed within the looped context with loops(loopName) where loopName is the name set whe creating the repeat()-step.
gremlin> g.V(1).
repeat(out("knows")).
until(repeat(out("created")).emit(has("name", "lop"))) //// (1)
==>v[4]
gremlin> g.V(6).
repeat('a', both('created').simplePath()).
emit(repeat('b', both('knows')).
until(loops('b').as('b').where(loops('a').as('b'))).
hasId(2)).dedup() //// (2)
==>v[4]
g.V(1).
repeat(out("knows")).
until(repeat(out("created")).emit(has("name", "lop"))) //// (1)
g.V(6).
repeat('a', both('created').simplePath()).
emit(repeat('b', both('knows')).
until(loops('b').as('b').where(loops('a').as('b'))).
hasId(2)).dedup() //2
-
Starting from vertex 1, keep going taking outgoing 'knows' edges until the vertex was created by 'lop'.
-
Starting from vertex 6, keep taking created edges in either direction until the vertex is same distance from vertex 2 over knows edges as it is from vertex 6 over created edges.
Finally, note that both emit() and until() can take a traversal and in such, situations, the predicate is
determined by traversal.hasNext(). A few examples are provided below.
gremlin> g.V(1).repeat(out()).until(hasLabel('software')).path().by('name') //// (1)
==>[marko,lop]
==>[marko,josh,ripple]
==>[marko,josh,lop]
gremlin> g.V(1).emit(hasLabel('person')).repeat(out()).path().by('name') //// (2)
==>[marko]
==>[marko,vadas]
==>[marko,josh]
gremlin> g.V(1).repeat(out()).until(outE().count().is(0)).path().by('name') //// (3)
==>[marko,lop]
==>[marko,vadas]
==>[marko,josh,ripple]
==>[marko,josh,lop]
g.V(1).repeat(out()).until(hasLabel('software')).path().by('name') //// (1)
g.V(1).emit(hasLabel('person')).repeat(out()).path().by('name') //// (2)
g.V(1).repeat(out()).until(outE().count().is(0)).path().by('name') //3
-
Starting from vertex 1, keep taking outgoing edges until a software vertex is reached.
-
Starting from vertex 1, and in an infinite loop, emit the vertex if it is a person and then traverser the outgoing edges.
-
Starting from vertex 1, keep taking outgoing edges until a vertex is reached that has no more outgoing edges.
|
Warning
|
The anonymous traversal of emit() and until() (not repeat()) process their current objects "locally."
In OLAP, where the atomic unit of computing is the vertex and its local "star graph," it is important that the
anonymous traversals do not leave the confines of the vertex’s star graph. In other words, they can not traverse to
an adjacent vertex’s properties or edges.
|
Additional References
Replace Step
The replace()-step (map) returns a string with the specified characters in the original string replaced with the new
characters. Any null arguments will be a no-op and the original string is returned. Null values from the incoming
traversers are not processed and remain as null when returned. If the incoming traverser is a non-String value then
an IllegalArgumentException will be thrown.
gremlin> g.inject('that', 'this', 'test', null).replace('h', 'j') //// (1)
==>tjat
==>tjis
==>test
==>null
gremlin> g.inject('hello world').replace(null, 'j') //// (2)
==>hello world
gremlin> g.V().hasLabel("software").values("name").replace("p", "g") //// (3)
==>log
==>riggle
gremlin> g.V().hasLabel("software").values("name").fold().replace(local, "p", "g") //// (4)
==>[log,riggle]
g.inject('that', 'this', 'test', null).replace('h', 'j') //// (1)
g.inject('hello world').replace(null, 'j') //// (2)
g.V().hasLabel("software").values("name").replace("p", "g") //// (3)
g.V().hasLabel("software").values("name").fold().replace(local, "p", "g") //4
-
Replace "h" in the strings with "j".
-
Null inputs are ignored and the original string is returned.
-
Return software names with "p" replaced by "g".
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
replace(String,String)
replace(Scope,String,String)
Reverse Step
The reverse()-step (map) returns the reverse of the incoming list traverser. Single values (including null) are not
processed and are added back to the Traversal Stream unchanged. If the incoming traverser is a String value then the
reversed String will be returned.
gremlin> g.V().values("name").reverse() //// (1)
==>okram
==>sadav
==>pol
==>hsoj
==>elppir
==>retep
gremlin> g.V().values("name").order().fold().reverse() //// (2)
==>[vadas,ripple,peter,marko,lop,josh]
g.V().values("name").reverse() //// (1)
g.V().values("name").order().fold().reverse() //2
-
Reverse the order of the characters in each name.
-
Fold all the names into a list in ascending order and then reverse the list’s ordering (into descending).
RTrim Step
The rTrim()-step (map) returns a string with trailing whitespace removed. Null values are not processed and remain
as null when returned. If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject(" hello ", " world ", null).rTrim()
==> hello
==> world
==>null
gremlin> g.inject([" hello ", " world ", null]).rTrim(local) //// (1)
==>[ hello, world,null]
g.inject(" hello ", " world ", null).rTrim()
g.inject([" hello ", " world ", null]).rTrim(local) //1
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Sack Step
A traverser can contain a local data structure called a "sack".
The sack()-step is used to read and write sacks (sideEffect or map). Each sack of each traverser is created
when using GraphTraversal.withSack(initialValueSupplier,splitOperator?,mergeOperator?).
-
Initial value supplier: A
Supplierproviding the initial value of each traverser’s sack. -
Split operator: a
UnaryOperatorthat clones the traverser’s sack when the traverser splits. If no split operator is provided, thenUnaryOperator.identity()is assumed. -
Merge operator: A
BinaryOperatorthat unites two traverser’s sack when they are merged. If no merge operator is provided, then traversers with sacks can not be merged.
Two trivial examples are presented below to demonstrate the initial value supplier. In the first example below, a
traverser is created at each vertex in the graph (g.V()), with a 1.0 sack (withSack(1.0f)), and then the sack
value is accessed (sack()). In the second example, a random float supplier is used to generate sack values.
gremlin> g.withSack(1.0f).V().sack()
==>1.0
==>1.0
==>1.0
==>1.0
==>1.0
==>1.0
gremlin> rand = new Random()
==>java.util.Random@a8abbec
gremlin> g.withSack {rand.nextFloat()}.V().sack()
==>0.47933537
==>0.31178284
==>0.7446147
==>0.73871464
==>0.21974838
==>0.12766135
g.withSack(1.0f).V().sack()
rand = new Random()
g.withSack {rand.nextFloat()}.V().sack()
A more complicated initial value supplier example is presented below where the sack values are used in a running
computation and then emitted at the end of the traversal. When an edge is traversed, the edge weight is multiplied
by the sack value (sack(mult).by('weight')). Note that the by()-modulator can be any arbitrary traversal.
gremlin> g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2)
==>v[5]
==>v[3]
gremlin> g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2).sack()
==>1.0
==>0.4
gremlin> g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2).path().
by().by('weight')
==>[v[1],1.0,v[4],1.0,v[5]]
==>[v[1],1.0,v[4],0.4,v[3]]
gremlin> g.V().sack(assign).by('age').sack() //// (1)
==>29
==>27
==>32
==>35
g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2)
g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2).sack()
g.withSack(1.0f).V().repeat(outE().sack(mult).by('weight').inV()).times(2).path().
by().by('weight')
g.V().sack(assign).by('age').sack() //1
-
The "age" property is not productive for all vertices and therefore those values are filtered during the assignment.
When complex objects are used (i.e. non-primitives), then a
split operator should be defined to ensure that each traverser gets a clone of its parent’s sack. The first example
does not use a split operator and as such, the same map is propagated to all traversers (a global data structure). The
second example, demonstrates how Map.clone() ensures that each traverser’s sack contains a unique, local sack.
gremlin> g.withSack {[:]}.V().out().out().
sack {m,v -> m[v.value('name')] = v.value('lang'); m}.sack() // BAD: single map
==>[ripple:java]
==>[ripple:java,lop:java]
gremlin> g.withSack {[:]}{it.clone()}.V().out().out().
sack {m,v -> m[v.value('name')] = v.value('lang'); m}.sack() // GOOD: cloned map
==>[ripple:java]
==>[lop:java]
g.withSack {[:]}.V().out().out().
sack {m,v -> m[v.value('name')] = v.value('lang'); m}.sack() // BAD: single map
g.withSack {[:]}{it.clone()}.V().out().out().
sack {m,v -> m[v.value('name')] = v.value('lang'); m}.sack() // GOOD: cloned map
|
Note
|
For primitives (i.e. integers, longs, floats, etc.), a split operator is not required as a primitives are encoded in the memory address of the sack, not as a reference to an object. |
If a merge operator is not provided, then traversers with sacks can not be bulked. However, in many situations,
merging the sacks of two traversers at the same location is algorithmically sound and good to provide so as to gain
the bulking optimization. In the examples below, the binary merge operator is Operator.sum. Thus, when two traverser
merge, their respective sacks are added together.
gremlin> g.withSack(1.0d).V(1).out('knows').in('knows') //// (1)
==>v[1]
==>v[1]
gremlin> g.withSack(1.0d).V(1).out('knows').in('knows').sack() //// (2)
==>1.0
==>1.0
gremlin> g.withSack(1.0d, sum).V(1).out('knows').in('knows').sack() //// (3)
==>2.0
==>2.0
gremlin> g.withSack(1.0d).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier() //// (4)
==>v[1]
==>v[1]
gremlin> g.withSack(1.0d).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (5)
==>0.5
==>0.5
gremlin> g.withSack(1.0d,sum).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (6)
==>1.0
==>1.0
gremlin> g.withBulk(false).withSack(1.0f,sum).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (7)
==>1.0
gremlin> g.withBulk(false).withSack(1.0f).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (8)
==>0.5
==>0.5
gremlin>
g.withSack(1.0d).V(1).out('knows').in('knows') //// (1)
g.withSack(1.0d).V(1).out('knows').in('knows').sack() //// (2)
g.withSack(1.0d, sum).V(1).out('knows').in('knows').sack() //// (3)
g.withSack(1.0d).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier() //// (4)
g.withSack(1.0d).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (5)
g.withSack(1.0d,sum).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (6)
g.withBulk(false).withSack(1.0f,sum).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (7)
g.withBulk(false).withSack(1.0f).V(1).local(outE('knows').barrier(normSack).inV()).in('knows').barrier().sack() //// (8)
-
We find vertex 1 twice because he knows two other people
-
Without a merge operation the sack values are 1.0.
-
When specifying
sumas the merge operation, the sack values are 2.0 because of bulking -
Like 1, but using barrier internally
-
The
local(…barrier(normSack)…)ensures that all traversers leaving vertex 1 have an evenly distributed amount of the initial 1.0 "energy" (50-50), i.e. the sack is 0.5 on each result -
Like 3, but using
sumas merge operator leads to the expected 1.0 -
There is now a single traverser with bulk of 2 and sack of 1.0 and thus, setting
withBulk(false)`yields the expected 1.0 -
Like 7, but without the
sumoperator
Additional References
Sample Step
The sample()-step is useful for sampling some number of traversers previous in the traversal.
gremlin> g.V().outE().sample(1).values('weight')
==>0.4
gremlin> g.V().outE().sample(1).by('weight').values('weight')
==>1.0
gremlin> g.V().outE().sample(2).by('weight').values('weight')
==>1.0
==>1.0
gremlin> g.V().both().sample(2).by('age') //// (1)
==>v[4]
==>v[4]
g.V().outE().sample(1).values('weight')
g.V().outE().sample(1).by('weight').values('weight')
g.V().outE().sample(2).by('weight').values('weight')
g.V().both().sample(2).by('age') //1
-
The "age" property is not productive for all vertices and therefore those values are not considered when sampling.
One of the more interesting use cases for sample() is when it is used in conjunction with local().
The combination of the two steps supports the execution of random walks.
In the example below, the traversal starts are vertex 1 and selects one edge to traverse based on a probability
distribution generated by the weights of the edges. The output is always a single path as by selecting a single edge,
the traverser never splits and continues down a single path in the graph.
gremlin> g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(5)
==>v[1]
gremlin> g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(5).
path()
==>[v[1],e[8][1-knows->4],v[4],e[10][4-created->5],v[5],e[10][4-created->5],v[4],e[8][1-knows->4],v[1],e[8][1-knows->4],v[4]]
gremlin> g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(10).
path()
==>[v[1],e[8][1-knows->4],v[4],e[8][1-knows->4],v[1],e[8][1-knows->4],v[4],e[10][4-created->5],v[5],e[10][4-created->5],v[4],e[8][1-knows->4],v[1],e[9][1-created->3],v[3],e[9][1-created->3],v[1],e[8][1-knows->4],v[4],e[10][4-created->5],v[5]]
g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(5)
g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(5).
path()
g.V(1).
repeat(local(bothE().sample(1).by('weight').otherV())).
times(10).
path()
As a clarification, note that in the above example local() is not strictly required as it only does the random walk
over a single vertex, but note what happens without it if multiple vertices are traversed:
gremlin> g.V().repeat(bothE().sample(1).by('weight').otherV()).times(5).path()
==>[v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1],e[8][1-knows->4],v[4]]
==>[v[2],e[7][1-knows->2],v[1],e[8][1-knows->4],v[4],e[11][4-created->3],v[3],e[11][4-created->3],v[4],e[10][4-created->5],v[5]]
==>[v[3],e[9][1-created->3],v[1],e[9][1-created->3],v[3],e[9][1-created->3],v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1]]
==>[v[4],e[8][1-knows->4],v[1],e[9][1-created->3],v[3],e[12][6-created->3],v[6],e[12][6-created->3],v[3],e[12][6-created->3],v[6]]
==>[v[5],e[10][4-created->5],v[4],e[11][4-created->3],v[3],e[11][4-created->3],v[4],e[8][1-knows->4],v[1],e[8][1-knows->4],v[4]]
==>[v[6],e[12][6-created->3],v[3],e[11][4-created->3],v[4],e[10][4-created->5],v[5],e[10][4-created->5],v[4],e[10][4-created->5],v[5]]
g.V().repeat(bothE().sample(1).by('weight').otherV()).times(5).path()
The use of local() ensures that the traversal over bothE() occurs once per vertex traverser that passes through,
thus allowing one random walk per vertex.
gremlin> g.V().repeat(local(bothE().sample(1).by('weight').otherV())).times(5).path()
==>[v[1],e[8][1-knows->4],v[4],e[8][1-knows->4],v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1],e[8][1-knows->4],v[4]]
==>[v[2],e[7][1-knows->2],v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1],e[8][1-knows->4],v[4],e[10][4-created->5],v[5]]
==>[v[3],e[9][1-created->3],v[1],e[9][1-created->3],v[3],e[11][4-created->3],v[4],e[10][4-created->5],v[5],e[10][4-created->5],v[4]]
==>[v[4],e[8][1-knows->4],v[1],e[9][1-created->3],v[3],e[9][1-created->3],v[1],e[9][1-created->3],v[3],e[11][4-created->3],v[4]]
==>[v[5],e[10][4-created->5],v[4],e[10][4-created->5],v[5],e[10][4-created->5],v[4],e[8][1-knows->4],v[1],e[9][1-created->3],v[3]]
==>[v[6],e[12][6-created->3],v[3],e[9][1-created->3],v[1],e[7][1-knows->2],v[2],e[7][1-knows->2],v[1],e[8][1-knows->4],v[4]]
g.V().repeat(local(bothE().sample(1).by('weight').otherV())).times(5).path()
So, while not strictly required, it is likely better to be explicit with the use of local() so that the proper intent
of the traversal is expressed.
Additional References
Select Step
Functional languages make use of function composition and
lazy evaluation to create complex computations from primitive operations. This is exactly what Traversal does. One
of the differentiating aspects of Gremlin’s data flow approach to graph processing is that the flow need not always go
"forward," but in fact, can go back to a previously seen area of computation. Examples include path()
as well as the select()-step (map). There are two general ways to use select()-step.
-
Select labeled steps within a path (as defined by
as()in a traversal). -
Select objects out of a
Map<String,Object>flow (i.e. a sub-map).
The first use case is demonstrated via example below.
gremlin> g.V().as('a').out().as('b').out().as('c') // no select
==>v[5]
==>v[3]
gremlin> g.V().as('a').out().as('b').out().as('c').select('a','b','c')
==>[a:v[1],b:v[4],c:v[5]]
==>[a:v[1],b:v[4],c:v[3]]
gremlin> g.V().as('a').out().as('b').out().as('c').select('a','b')
==>[a:v[1],b:v[4]]
==>[a:v[1],b:v[4]]
gremlin> g.V().as('a').out().as('b').out().as('c').select('a','b').by('name')
==>[a:marko,b:josh]
==>[a:marko,b:josh]
gremlin> g.V().as('a').out().as('b').out().as('c').select('a') //// (1)
==>v[1]
==>v[1]
gremlin> g.V(1).as('a').both().as('b').select('a','b').by('age')
==>[a:29,b:27]
==>[a:29,b:32]
g.V().as('a').out().as('b').out().as('c') // no select
g.V().as('a').out().as('b').out().as('c').select('a','b','c')
g.V().as('a').out().as('b').out().as('c').select('a','b')
g.V().as('a').out().as('b').out().as('c').select('a','b').by('name')
g.V().as('a').out().as('b').out().as('c').select('a') //// (1)
g.V(1).as('a').both().as('b').select('a','b').by('age')
-
If the selection is one step, no map is returned.
-
The "age" property is not productive for all vertices and therefore those values are filtered.
When there is only one label selected, then a single object is returned. This is useful for stepping back in a computation and easily moving forward again on the object reverted to.
gremlin> g.V().out().out()
==>v[5]
==>v[3]
gremlin> g.V().out().out().path()
==>[v[1],v[4],v[5]]
==>[v[1],v[4],v[3]]
gremlin> g.V().as('x').out().out().select('x')
==>v[1]
==>v[1]
gremlin> g.V().out().as('x').out().select('x')
==>v[4]
==>v[4]
gremlin> g.V().out().out().as('x').select('x') // pointless
==>v[5]
==>v[3]
g.V().out().out()
g.V().out().out().path()
g.V().as('x').out().out().select('x')
g.V().out().as('x').out().select('x')
g.V().out().out().as('x').select('x') // pointless
|
Note
|
When executing a traversal with select() on a standard traversal engine (i.e. OLTP), select() will do its
best to avoid calculating the path history and instead, will rely on a global data structure for storing the currently
selected object. As such, if only a subset of the path walked is required, select() should be used over the more
resource intensive path()-step.
|
When the set of keys or values (i.e. columns) of a path or map are needed, use select(keys) and select(values),
respectively. This is especially useful when one is only interested in the top N elements in a groupCount()
ranking.
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5)
==>[PLAYING IN THE BAND:107,JACK STRAW:99,TRUCKING:94,DRUMS:92,ME AND MY UNCLE:86]
gremlin> g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5).select(keys)
==>[PLAYING IN THE BAND,JACK STRAW,TRUCKING,DRUMS,ME AND MY UNCLE]
gremlin> g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5).select(keys).unfold()
==>PLAYING IN THE BAND
==>JACK STRAW
==>TRUCKING
==>DRUMS
==>ME AND MY UNCLE
g = traversal().with(graph)
g.io('data/grateful-dead.xml').read().iterate()
g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5)
g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5).select(keys)
g.V().hasLabel('song').out('followedBy').groupCount().by('name').
order(local).by(values,desc).limit(local, 5).select(keys).unfold()
Similarly, for extracting the values from a path or map.
gremlin> g = traversal().with(graph)
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.io('data/grateful-dead.xml').read().iterate()
gremlin> g.V().hasLabel('song').out('sungBy').groupCount().by('name') //// (1)
==>[All:9,Weir_Garcia:1,Lesh:19,Weir_Kreutzmann:1,Pigpen_Garcia:1,Pigpen:36,Unknown:6,Weir_Bralove:1,Joan_Baez:10,Suzanne_Vega:2,Welnick:10,Lesh_Pigpen:1,Elvin_Bishop:4,Neil_Young:1,Garcia_Weir_Lesh:1,Hunter:3,Hornsby:4,Jon_Hendricks:2,Weir_Hart:3,Lesh_Mydland:1,Mydland_Lesh:1,instrumental:1,Garcia:146,Hart:2,Welnick_Bralove:1,Weir:99,Garcia_Dawson:1,Pigpen_Weir_Mydland:2,Jorma_Kaukonen:4,Joey_Covington:2,Allman_Brothers:1,Garcia_Lesh:3,Boz_Scaggs:1,Pigpen?:1,Keith_Godchaux:1,Etta_James:1,Weir_Wasserman:1,Hall_and_Oates:2,Grateful_Dead:17,Spencer_Davis:2,Pigpen_Mydland:3,Beach_Boys:3,Donna:4,Bo_Diddley:7,Bob_Dylan:22,Hart_Kreutzmann:2,Weir_Mydland:3,Lesh_Hart_Kreutzmann:1,Stephen_Stills:2,Mydland:18,Neville_Brothers:2,Weir_Hart_Welnick:1,Garcia_Lesh_Weir:1,Garcia_Weir:3,Neal_Cassady:1,John_Fogerty:5,Donna_Godchaux:2,Pigpen_Weir:8,Garcia_Kreutzmann:2,None:6]
gremlin> g.V().hasLabel('song').out('sungBy').groupCount().by('name').select(values) //// (2)
==>[9,1,19,1,1,36,6,1,10,2,10,1,4,1,1,3,4,2,3,1,1,1,146,2,1,99,1,2,4,2,1,3,1,1,1,1,1,2,17,2,3,3,4,7,22,2,3,1,2,18,2,1,1,3,1,5,2,8,2,6]
gremlin> g.V().hasLabel('song').out('sungBy').groupCount().by('name').select(values).unfold().
groupCount().order(local).by(values,desc).limit(local, 5) //// (3)
==>[1:22,2:12,3:7,4:4,6:2]
g = traversal().with(graph)
g.io('data/grateful-dead.xml').read().iterate()
g.V().hasLabel('song').out('sungBy').groupCount().by('name') //// (1)
g.V().hasLabel('song').out('sungBy').groupCount().by('name').select(values) //// (2)
g.V().hasLabel('song').out('sungBy').groupCount().by('name').select(values).unfold().
groupCount().order(local).by(values,desc).limit(local, 5) //3
-
Which artist sung how many songs?
-
Get an anonymized set of song repertoire sizes.
-
What are the 5 most common song repertoire sizes?
|
Warning
|
Note that by()-modulation is not supported with select(keys) and select(values).
|
There is also an option to supply a Pop operation to select() to manipulate List objects in the Traverser:
gremlin> g.V(1).as("a").repeat(out().as("a")).times(2).select(first, "a")
==>v[1]
==>v[1]
gremlin> g.V(1).as("a").repeat(out().as("a")).times(2).select(last, "a")
==>v[5]
==>v[3]
gremlin> g.V(1).as("a").repeat(out().as("a")).times(2).select(all, "a")
==>[v[1],v[4],v[5]]
==>[v[1],v[4],v[3]]
g.V(1).as("a").repeat(out().as("a")).times(2).select(first, "a")
g.V(1).as("a").repeat(out().as("a")).times(2).select(last, "a")
g.V(1).as("a").repeat(out().as("a")).times(2).select(all, "a")
In addition to the previously shown examples, where select() was used to select an element based on a static key, select() can also accept a traversal
that emits a key.
|
Warning
|
Since the key used by select(<traversal>) cannot be determined at compile time, the TraversalSelectStep enables full path tracking.
|
gremlin> g.withSideEffect("alias", ["marko":"okram"]).V(). //// (1)
values("name").sack(assign). //// (2)
optional(select("alias").select(sack())) //// (3)
==>okram
==>vadas
==>lop
==>josh
==>ripple
==>peter
g.withSideEffect("alias", ["marko":"okram"]).V(). //// (1)
values("name").sack(assign). //// (2)
optional(select("alias").select(sack())) //3
-
Inject a name alias map and start the traversal from all vertices.
-
Select all
namevalues and store them as the current traverser’s sack value. -
Optionally select the alias for the current name from the injected map.
Using Where with Select
Like match()-step, it is possible to use where(), as where is a filter that processes
Map<String,Object> streams.
gremlin> g.V().as('a').out('created').in('created').as('b').select('a','b').by('name') //// (1)
==>[a:marko,b:marko]
==>[a:marko,b:josh]
==>[a:marko,b:peter]
==>[a:josh,b:josh]
==>[a:josh,b:marko]
==>[a:josh,b:josh]
==>[a:josh,b:peter]
==>[a:peter,b:marko]
==>[a:peter,b:josh]
==>[a:peter,b:peter]
gremlin> g.V().as('a').out('created').in('created').as('b').
select('a','b').by('name').where('a',neq('b')) //// (2)
==>[a:marko,b:josh]
==>[a:marko,b:peter]
==>[a:josh,b:marko]
==>[a:josh,b:peter]
==>[a:peter,b:marko]
==>[a:peter,b:josh]
gremlin> g.V().as('a').out('created').in('created').as('b').
select('a','b'). //// (3)
where('a',neq('b')).
where(__.as('a').out('knows').as('b')).
select('a','b').by('name')
==>[a:marko,b:josh]
g.V().as('a').out('created').in('created').as('b').select('a','b').by('name') //// (1)
g.V().as('a').out('created').in('created').as('b').
select('a','b').by('name').where('a',neq('b')) //// (2)
g.V().as('a').out('created').in('created').as('b').
select('a','b'). //// (3)
where('a',neq('b')).
where(__.as('a').out('knows').as('b')).
select('a','b').by('name')
-
A standard
select()that generates aMap<String,Object>of variables bindings in the path (i.e.aandb) for the sake of a running example. -
The
select().by('name')projects each binding vertex to their name property value andwhere()operates to ensure respectiveaandbstrings are not the same. -
The first
select()projects a vertex binding set. A binding is filtered ifavertex equalsbvertex. A binding is filtered ifadoesn’t knowb. The second and finalselect()projects the name of the vertices.
Additional References
ShortestPath step
The shortestPath()-step provides an easy way to find shortest non-cyclic paths in a graph. It is configurable
using the with()-modulator with the options given below.
|
Important
|
The shortestPath()-step is a VertexComputing-step and as such, can only be used against a graph
that supports GraphComputer (OLAP).
|
| Key | Type | Description | Default |
|---|---|---|---|
|
|
Sets a filter traversal for the end vertices (e.g. |
all vertices ( |
|
|
Sets a |
|
|
|
Sets the |
|
|
|
Sets the distance limit for all shortest paths. |
none |
|
|
Whether to include edges in the result or not. |
|
gremlin> g = g.withComputer()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer]
gremlin> g.V().shortestPath() //// (1)
==>[v[4],v[1]]
==>[v[4],v[3]]
==>[v[4]]
==>[v[4],v[1],v[2]]
==>[v[4],v[5]]
==>[v[4],v[3],v[6]]
==>[v[6],v[3],v[1]]
==>[v[6],v[3]]
==>[v[6],v[3],v[4]]
==>[v[6],v[3],v[1],v[2]]
==>[v[6],v[3],v[4],v[5]]
==>[v[6]]
==>[v[2],v[1]]
==>[v[2],v[1],v[3]]
==>[v[2],v[1],v[4]]
==>[v[2]]
==>[v[2],v[1],v[4],v[5]]
==>[v[2],v[1],v[3],v[6]]
==>[v[5],v[4],v[1]]
==>[v[5],v[4],v[3]]
==>[v[5],v[4]]
==>[v[5],v[4],v[1],v[2]]
==>[v[5]]
==>[v[5],v[4],v[3],v[6]]
==>[v[3],v[1]]
==>[v[3]]
==>[v[3],v[4]]
==>[v[3],v[1],v[2]]
==>[v[3],v[4],v[5]]
==>[v[3],v[6]]
==>[v[1]]
==>[v[1],v[3]]
==>[v[1],v[4]]
==>[v[1],v[2]]
==>[v[1],v[4],v[5]]
==>[v[1],v[3],v[6]]
gremlin> g.V().has('person','name','marko').shortestPath() //// (2)
==>[v[1]]
==>[v[1],v[4],v[5]]
==>[v[1],v[4]]
==>[v[1],v[3]]
==>[v[1],v[2]]
==>[v[1],v[3],v[6]]
gremlin> g.V().shortestPath().with(ShortestPath.target, __.has('name','peter')) //// (3)
==>[v[1],v[3],v[6]]
==>[v[2],v[1],v[3],v[6]]
==>[v[3],v[6]]
==>[v[4],v[3],v[6]]
==>[v[5],v[4],v[3],v[6]]
==>[v[6]]
gremlin> g.V().shortestPath().
with(ShortestPath.edges, Direction.IN).
with(ShortestPath.target, __.has('name','josh')) //// (4)
==>[v[3],v[4]]
==>[v[4]]
==>[v[5],v[4]]
gremlin> g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')) //// (5)
==>[v[1],v[4]]
gremlin> g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')).
with(ShortestPath.distance, 'weight') //// (6)
==>[v[1],v[3],v[4]]
gremlin> g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')).
with(ShortestPath.includeEdges, true) //// (7)
==>[v[1],e[8][1-knows->4],v[4]]
g = g.withComputer()
g.V().shortestPath() //// (1)
g.V().has('person','name','marko').shortestPath() //// (2)
g.V().shortestPath().with(ShortestPath.target, __.has('name','peter')) //// (3)
g.V().shortestPath().
with(ShortestPath.edges, Direction.IN).
with(ShortestPath.target, __.has('name','josh')) //// (4)
g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')) //// (5)
g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')).
with(ShortestPath.distance, 'weight') //// (6)
g.V().has('person','name','marko').
shortestPath().
with(ShortestPath.target, __.has('name','josh')).
with(ShortestPath.includeEdges, true) //7
-
Find all shortest paths.
-
Find all shortest paths from
marko. -
Find all shortest paths to
peter. -
Find all in-directed paths to
josh. -
Find all shortest paths from
markotojosh. -
Find all shortest paths from
markotojoshusing a custom distance property. -
Find all shortest paths from
markotojoshand include edges in the result.
gremlin> g.inject(g.withComputer().V().shortestPath().
with(ShortestPath.distance, 'weight').
with(ShortestPath.includeEdges, true).
with(ShortestPath.maxDistance, 1).toList().toArray()).
map(unfold().values('name','weight').fold()) //// (1)
==>[marko,0.4,lop]
==>[marko]
==>[marko,0.5,vadas]
==>[marko,0.4,lop,0.4,josh]
==>[marko,0.4,lop,0.2,peter]
==>[vadas,0.5,marko,0.4,lop]
==>[vadas,0.5,marko]
==>[vadas]
==>[lop]
==>[lop,0.4,marko]
==>[lop,0.4,marko,0.5,vadas]
==>[lop,0.4,josh]
==>[lop,0.2,peter]
==>[ripple,1.0,josh]
==>[ripple]
==>[peter,0.2,lop]
==>[peter,0.2,lop,0.4,marko]
==>[peter,0.2,lop,0.4,josh]
==>[peter]
==>[josh,0.4,lop]
==>[josh,0.4,lop,0.4,marko]
==>[josh]
==>[josh,1.0,ripple]
==>[josh,0.4,lop,0.2,peter]
g.inject(g.withComputer().V().shortestPath().
with(ShortestPath.distance, 'weight').
with(ShortestPath.includeEdges, true).
with(ShortestPath.maxDistance, 1).toList().toArray()).
map(unfold().values('name','weight').fold()) //1
-
Find all shortest paths using a custom distance property and limit the distance to 1. Inject the result into a OLTP
GraphTraversalin order to be able to select properties from all elements in all paths.
Additional References
SideEffect Step
The sideEffect() step performs some operation on the traverser and passes it to the next step in the process. Please
see the General Steps section for more information.
Additional References
SimplePath Step
When it is important that a traverser not repeat its path through the graph, simplePath()-step should be used
(filter). The path information of the traverser is analyzed and if the path has repeated
objects in it, the traverser is filtered. If cyclic behavior is desired, see cyclicPath().
gremlin> g.V(1).both().both()
==>v[1]
==>v[4]
==>v[6]
==>v[1]
==>v[5]
==>v[3]
==>v[1]
gremlin> g.V(1).both().both().simplePath()
==>v[4]
==>v[6]
==>v[5]
==>v[3]
gremlin> g.V(1).both().both().simplePath().path()
==>[v[1],v[3],v[4]]
==>[v[1],v[3],v[6]]
==>[v[1],v[4],v[5]]
==>[v[1],v[4],v[3]]
gremlin> g.V(1).both().both().simplePath().by('age') //// (1)
gremlin> g.V().out().as('a').out().as('b').out().as('c').
simplePath().by(label).
path()
gremlin> g.V().out().as('a').out().as('b').out().as('c').
simplePath().
by(label).
from('b').
to('c').
path().
by('name')
g.V(1).both().both()
g.V(1).both().both().simplePath()
g.V(1).both().both().simplePath().path()
g.V(1).both().both().simplePath().by('age') //// (1)
g.V().out().as('a').out().as('b').out().as('c').
simplePath().by(label).
path()
g.V().out().as('a').out().as('b').out().as('c').
simplePath().
by(label).
from('b').
to('c').
path().
by('name')
-
The "age" property is not productive for all vertices and therefore those values are filtered.
By using the from() and to() modulators traversers can ensure that only certain sections of the path are acyclic.
gremlin> g.addV().property(id, 'A').as('a').
addV().property(id, 'B').as('b').
addV().property(id, 'C').as('c').
addV().property(id, 'D').as('d').
addE('link').from('a').to('b').
addE('link').from('b').to('c').
addE('link').from('c').to('d').iterate()
gremlin> g.V('A').repeat(both().simplePath()).times(3).path() //// (1)
==>[v[A],v[B],v[C],v[D]]
gremlin> g.V('D').repeat(both().simplePath()).times(3).path() //// (2)
==>[v[D],v[C],v[B],v[A]]
gremlin> g.V('A').as('a').
repeat(both().simplePath().from('a')).times(3).as('b').
repeat(both().simplePath().from('b')).times(3).path() //// (3)
==>[v[A],v[B],v[C],v[D],v[C],v[B],v[A]]
g.addV().property(id, 'A').as('a').
addV().property(id, 'B').as('b').
addV().property(id, 'C').as('c').
addV().property(id, 'D').as('d').
addE('link').from('a').to('b').
addE('link').from('b').to('c').
addE('link').from('c').to('d').iterate()
g.V('A').repeat(both().simplePath()).times(3).path() //// (1)
g.V('D').repeat(both().simplePath()).times(3).path() //// (2)
g.V('A').as('a').
repeat(both().simplePath().from('a')).times(3).as('b').
repeat(both().simplePath().from('b')).times(3).path() //3
-
Traverse all acyclic 3-hop paths starting from vertex
A -
Traverse all acyclic 3-hop paths starting from vertex
D -
Traverse all acyclic 3-hop paths starting from vertex
Aand from there again all 3-hop paths. The second path may cross the vertices from the first path.
Additional References
Skip Step
The skip()-step is analogous to range()-step save that the higher end range is set to -1.
gremlin> g.V().values('age').order()
==>27
==>29
==>32
==>35
gremlin> g.V().values('age').order().skip(2)
==>32
==>35
gremlin> g.V().values('age').order().range(2, -1)
==>32
==>35
g.V().values('age').order()
g.V().values('age').order().skip(2)
g.V().values('age').order().range(2, -1)
The skip()-step can also be applied with Scope.local, in which case it operates on the incoming collection.
gremlin> g.V().hasLabel('person').filter(outE('created')).as('p'). //// (1)
map(out('created').values('name').fold()).
project('person','primary','other').
by(select('p').by('name')).
by(limit(local, 1).unfold()). //// (2)
by(skip(local, 1)) //// (3)
==>[person:marko,primary:lop,other:[]]
==>[person:josh,primary:ripple,other:[lop]]
==>[person:peter,primary:lop,other:[]]
g.V().hasLabel('person').filter(outE('created')).as('p'). //// (1)
map(out('created').values('name').fold()).
project('person','primary','other').
by(select('p').by('name')).
by(limit(local, 1).unfold()). //// (2)
by(skip(local, 1)) //3
-
For each person who created something…
-
…select the first project (random order) as
primaryand… -
…select all other projects as
other.
Additional References
Split Step
The split()-step (map) returns a list of strings created by splitting the incoming string traverser around the
matches of the given separator. A null separator will split the string by whitespaces. An empty string separator will split on each character.
Null values from the incoming traversers are not processed and remain as null when returned. If the incoming traverser is a non-String value then an
IllegalArgumentException will be thrown.
gremlin> g.inject("that", "this", "test", null).split("h") //// (1)
==>[t,at]
==>[t,is]
==>[test]
==>null
gremlin> g.V().hasLabel("person").values("name").split("a") //// (2)
==>[m,rko]
==>[v,d,s]
==>[josh]
==>[peter]
gremlin> g.inject("helloworld", "hello world", "hello world").split(null) //// (3)
==>[helloworld]
==>[hello,world]
==>[hello,world]
gremlin> g.inject("hello", "world", null).split("") //// (4)
==>[h,e,l,l,o]
==>[w,o,r,l,d]
==>null
gremlin> g.V().hasLabel("person").values("name").fold().split(local, "a") //// (5)
==>[[m,rko],[v,d,s],[josh],[peter]]
g.inject("that", "this", "test", null).split("h") //// (1)
g.V().hasLabel("person").values("name").split("a") //// (2)
g.inject("helloworld", "hello world", "hello world").split(null) //// (3)
g.inject("hello", "world", null).split("") //// (4)
g.V().hasLabel("person").values("name").fold().split(local, "a") //5
-
Split the strings by "h".
-
Split person names by "a".
-
Splitting by null will split by whitespaces.
-
Splitting by "" will split by each character.
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list of results.
Additional References
split(String)
split(Scope, String)
Subgraph Step
Extracting a portion of a graph from a larger one for analysis, visualization or other purposes is a fairly common
use case for graph analysts and developers. The subgraph()-step (sideEffect) provides a way to produce an
edge-induced subgraph from virtually any traversal.
The following example demonstrates how to produce the "knows" subgraph:
gremlin> subGraph = g.E().hasLabel('knows').subgraph('subGraph').cap('subGraph').next() //// (1)
==>tinkergraph[vertices:3 edges:2]
gremlin> sg = traversal().with(subGraph)
==>graphtraversalsource[tinkergraph[vertices:3 edges:2], standard]
gremlin> sg.E() //// (2)
==>e[7][1-knows->2]
==>e[8][1-knows->4]
subGraph = g.E().hasLabel('knows').subgraph('subGraph').cap('subGraph').next() //// (1)
sg = traversal().with(subGraph)
sg.E() //2
-
As this function produces "edge-induced" subgraphs,
subgraph()must be called at edge steps. -
The subgraph contains only "knows" edges.
A more common subgraphing use case is to get all of the graph structure surrounding a single vertex:
gremlin> subGraph = g.V(3).repeat(__.inE().subgraph('subGraph').outV()).times(3).cap('subGraph').next() //// (1)
==>tinkergraph[vertices:4 edges:4]
gremlin> sg = traversal().with(subGraph)
==>graphtraversalsource[tinkergraph[vertices:4 edges:4], standard]
gremlin> sg.E()
==>e[8][1-knows->4]
==>e[9][1-created->3]
==>e[11][4-created->3]
==>e[12][6-created->3]
subGraph = g.V(3).repeat(__.inE().subgraph('subGraph').outV()).times(3).cap('subGraph').next() //// (1)
sg = traversal().with(subGraph)
sg.E()
-
Starting at vertex
3, traverse 3 steps away on in-edges, outputting all of that into the subgraph.
The above example is purposely brief so as to focus on subgraph() usage, however, it may not be the most optimal
method for constructing the subgraph. For instance, if the graph had cycles, it would attempt to reconstruct parts
of the subgraph which are already present. The duplicates would not be created, but it would involve some unnecessary
processing. If the only interest of the traversal was to populate the subgraph, it would be better to include
simplePath() to filter out those cycles, as in .inE().subgraph('subGraph').outV().simplePath(). From another
perspective, it might also make some sense to use dedup() to avoid traversing the same vertices repeatedly where
two vertices shared the multiple edges between them, as in .inE().dedup().subgraph('subGraph').outV().dedup().
There can be multiple subgraph() calls within the same traversal. Each operating against either the same graph
(i.e. same side-effect key) or different graphs (i.e. different side-effect keys).
gremlin> t = g.V().outE('knows').subgraph('knowsG').inV().outE('created').subgraph('createdG').
inV().inE('created').subgraph('createdG').iterate()
gremlin> traversal().with(t.sideEffects.get('knowsG')).E()
==>e[7][1-knows->2]
==>e[8][1-knows->4]
gremlin> traversal().with(t.sideEffects.get('createdG')).E()
==>e[9][1-created->3]
==>e[10][4-created->5]
==>e[11][4-created->3]
==>e[12][6-created->3]
t = g.V().outE('knows').subgraph('knowsG').inV().outE('created').subgraph('createdG').
inV().inE('created').subgraph('createdG').iterate()
traversal().with(t.sideEffects.get('knowsG')).E()
traversal().with(t.sideEffects.get('createdG')).E()
TinkerGraph is the ideal (and default) Graph into which a subgraph is extracted as it’s fast, in-memory, and supports
user-supplied identifiers which can be any Java object. It is this last feature that needs some focus as many
TinkerPop-enabled graphs have complex identifier types and TinkerGraph’s ability to consume those makes it a perfect
host for an incoming subgraph. However care needs to be taken when using the elements of the TinkerGraph subgraph.
The original graph’s identifiers may be preserved, but the elements of the graph are now TinkerGraph objects like,
TinkerVertex and TinkerEdge. As a result, they can not be used directly in Gremlin running against the original
graph. For example, the following traversal would likely return an error:
Vertex v = sg.V().has('name','marko').next(); //1
List<Vertex> vertices = g.V(v).out().toList(); //2
-
Here "sg" is a reference to a TinkerGraph subgraph and "v" is a
TinkerVertex. -
The
g.V(v)has the potential to fail as "g" is the originalGraphinstance and not a TinkerGraph - it could reject theTinkerVertexinstance as it will not recognize it.
It is safer to wrap the TinkerVertex in a ReferenceVertex or simply reference the id() as follows:
Vertex v = sg.V().has('name','marko').next();
List<Vertex> vertices = g.V(v.id()).out().toList();
// OR
Vertex v = new ReferenceVertex(sg.V().has('name','marko').next());
List<Vertex> vertices = g.V(v).out().toList();
Additional References
Substring Step
The substring()-step (map) returns a substring with a 0-based start index (inclusive) and optionally an end index (exclusive) specified.
If the start index is negative then it will begin at the specified index counted from the end of the string, or 0 if exceeding the string length.
Likewise, if the end index is negative then it will end at the specified index counted from the end of the string, or 0 if exceeding the string length.
End index is optional, if it is not specified or if it exceeds the length of the string then all remaining characters will
be returned. End index ≤ start index will return the empty string. Null values are not processed and remain as null when returned.
If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject("test", "hello world", null).substring(1, 8)
==>est
==>ello wo
==>null
gremlin> g.inject("hello world").substring(-4) //// (1)
==>orld
gremlin> g.inject("hello world").substring(2, 0) //// (2)
==>
gremlin> g.V().hasLabel("software").values("name").substring(2)
==>p
==>pple
gremlin> g.V().hasLabel("software").values("name").fold().substring(local, 2) //// (3)
==>[p,pple]
g.inject("test", "hello world", null).substring(1, 8)
g.inject("hello world").substring(-4) //// (1)
g.inject("hello world").substring(2, 0) //// (2)
g.V().hasLabel("software").values("name").substring(2)
g.V().hasLabel("software").values("name").fold().substring(local, 2) //3
-
Negative start index, the first character is read by counting from the end of the string
-
Length of 0 specified will return the empty string
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
substring(int)
substring(Scope,int)
substring(int,int)
substring(Scope,int,int)
Sum Step
The sum()-step (map) operates on a stream of numbers and sums the numbers together to yield a result. Note that
the current traverser number is multiplied by the traverser bulk to determine how many such numbers are being
represented.
gremlin> g.V().values('age').sum()
==>123
gremlin> g.V().repeat(both()).times(3).values('age').sum()
==>1471
g.V().values('age').sum()
g.V().repeat(both()).times(3).values('age').sum()
When called as sum(local) it determines the sum of the current, local object (not the objects in the traversal
stream). This works for Collection-type objects.
gremlin> g.V().values('age').fold().sum(local)
==>123
g.V().values('age').fold().sum(local)
When there are null values being evaluated the null objects are ignored, but if all values are recognized as null
the return value is null.
gremlin> g.inject(null,10, 9, null).sum()
==>19
gremlin> g.inject([null,null,null]).sum(local)
==>null
g.inject(null,10, 9, null).sum()
g.inject([null,null,null]).sum(local)
Additional References
Tail Step
The tail()-step is analogous to limit()-step, except that it emits the last n-objects instead of
the first n-objects.
gremlin> g.V().values('name').order()
==>josh
==>lop
==>marko
==>peter
==>ripple
==>vadas
gremlin> g.V().values('name').order().tail() //// (1)
==>vadas
gremlin> g.V().values('name').order().tail(1) //// (2)
==>vadas
gremlin> g.V().values('name').order().tail(3) //// (3)
==>peter
==>ripple
==>vadas
g.V().values('name').order()
g.V().values('name').order().tail() //// (1)
g.V().values('name').order().tail(1) //// (2)
g.V().values('name').order().tail(3) //3
-
Last name (alphabetically).
-
Same as statement 1.
-
Last three names.
The tail()-step can also be applied with Scope.local, in which case it operates on the incoming collection.
gremlin> g.V().as('a').out().as('a').out().as('a').select('a').by(tail(local)).values('name') //// (1)
==>ripple
==>lop
gremlin> g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local) //// (2)
==>[ripple]
==>[lop]
gremlin> g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 1) //// (3)
==>[ripple]
==>[lop]
gremlin> g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 1).unfold() //// (4)
==>ripple
==>lop
gremlin> g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 2) //// (5)
==>[ripple]
==>[lop]
gremlin> g.V().elementMap().tail(local) //// (6)
==>[age:29]
==>[age:27]
==>[lang:java]
==>[age:32]
==>[lang:java]
==>[age:35]
g.V().as('a').out().as('a').out().as('a').select('a').by(tail(local)).values('name') //// (1)
g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local) //// (2)
g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 1) //// (3)
g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 1).unfold() //// (4)
g.V().as('a').out().as('a').out().as('a').select('a').by(unfold().values('name').fold()).tail(local, 2) //// (5)
g.V().elementMap().tail(local) //6
-
Only the most recent name from the "a" step (
List<Vertex>becomesVertex). -
List<String>for each path containing the last name from the 'a' step. -
Same as statement 2 (
List<String>for each path containing the last name). -
Stringfor each path containing the last name (useunfold()to extract single elements from singleton collections). -
List<String>for each path containing the last two names from the 'a' step. -
Map<String, Object>for each vertex, containing only the last property value.
Additional References
TimeLimit Step
In many situations, a graph traversal is not about getting an exact answer as its about getting a relative ranking.
A classic example is recommendation. What is desired is a
relative ranking of vertices, not their absolute rank. Next, it may be desirable to have the traversal execute for
no more than 2 milliseconds. In such situations, timeLimit()-step (filter) can be used.
|
Note
|
The method clock(int runs, Closure code) is a utility preloaded in the Gremlin Console
that can be used to time execution of a body of code.
|
gremlin> g.V().repeat(both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()
==>v[1]=2744208
==>v[3]=2744208
==>v[4]=2744208
==>v[2]=1136688
==>v[5]=1136688
==>v[6]=1136688
gremlin> clock(1) {g.V().repeat(both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()}
==>0.668334
gremlin> g.V().repeat(timeLimit(2).both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()
==>v[1]=2744208
==>v[3]=2744208
==>v[4]=2744208
==>v[2]=1136688
==>v[5]=1136688
==>v[6]=1136688
gremlin> clock(1) {g.V().repeat(timeLimit(2).both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()}
==>0.5495
g.V().repeat(both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()
clock(1) {g.V().repeat(both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()}
g.V().repeat(timeLimit(2).both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()
clock(1) {g.V().repeat(timeLimit(2).both().groupCount('m')).times(16).cap('m').order(local).by(values,desc).next()}
In essence, the relative order is respected, even through the number of traversers at each vertex is not. The primary
benefit being that the calculation is guaranteed to complete at the specified time limit (in milliseconds). Finally,
note that the internal clock of timeLimit()-step starts when the first traverser enters it. When the time limit is
reached, any next() evaluation of the step will yield a NoSuchElementException and any hasNext() evaluation will
yield false.
Additional References
Times Step
The times-step is not an actual step, but is instead a step modulator for repeat() (find more
documentation on the times() there).
Additional References
To Step
The to()-step is not an actual step, but instead is a "step-modulator" similar to as() and
by(). If a step is able to accept traversals or strings then to() is the
means by which they are added. The general pattern is step().to(). See from()-step.
The list of steps that support to()-modulation are: simplePath(), cyclicPath(),
path(), and addE().
Additional References
ToLower Step
The toLower()-step (map) returns the lowercase representation of incoming string or list of string traverser. Null values are not processed and remain as null when returned.
If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject("HELLO", "wORlD", null).toLower()
==>hello
==>world
==>null
gremlin> g.inject(["HELLO", "wORlD", null]).toLower(Scope.local) //// (1)
==>[hello,world,null]
g.inject("HELLO", "wORlD", null).toLower()
g.inject(["HELLO", "wORlD", null]).toLower(Scope.local) //1
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
ToUpper Step
The toUpper()-step (map) returns the uppercase representation of incoming string or list of string traverser. Null values are not processed and remain as null when returned.
If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject("hello", "wORlD", null).toUpper()
==>HELLO
==>WORLD
==>null
gremlin> g.V().values("name").toUpper() //// (1)
==>MARKO
==>VADAS
==>LOP
==>JOSH
==>RIPPLE
==>PETER
gremlin> g.V().values("name").fold().toUpper(local) //// (2)
==>[MARKO,VADAS,LOP,JOSH,RIPPLE,PETER]
g.inject("hello", "wORlD", null).toUpper()
g.V().values("name").toUpper() //// (1)
g.V().values("name").fold().toUpper(local) //2
-
Returns the upper case representation of all vertex names.
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Additional References
Tree Step
From any one element (i.e. vertex or edge), the emanating paths from that element can be aggregated to form a
tree. Gremlin provides tree()-step (sideEffect) for such
this situation.
gremlin> tree = g.V().out().out().tree().next()
==>v[1]={v[4]={v[3]={}, v[5]={}}}
tree = g.V().out().out().tree().next()
It is important to see how the paths of all the emanating traversers are united to form the tree.
The resultant tree data structure can then be manipulated (see Tree JavaDoc).
gremlin> tree = g.V().out().out().tree().by('name').next()
==>marko={josh={ripple={}, lop={}}}
gremlin> tree['marko']
==>josh={ripple={}, lop={}}
gremlin> tree['marko']['josh']
==>ripple={}
==>lop={}
gremlin> tree.getObjectsAtDepth(3)
==>ripple
==>lop
tree = g.V().out().out().tree().by('name').next()
tree['marko']
tree['marko']['josh']
tree.getObjectsAtDepth(3)
Note that when using by()-modulation, tree nodes are combined based on projection uniqueness, not on the
uniqueness of the original objects being projected. For instance:
gremlin> g.V().has('name','josh').out('created').values('name').tree() //// (1)
==>[v[4]:[v[3]:[lop:[]],v[5]:[ripple:[]]]]
gremlin> g.V().has('name','josh').out('created').values('name').
tree().by('name').by(label).by() //// (2)
==>[josh:[software:[ripple:[],lop:[]]]]
g.V().has('name','josh').out('created').values('name').tree() //// (1)
g.V().has('name','josh').out('created').values('name').
tree().by('name').by(label).by() //2
-
When the
tree()is created, vertex 3 and 5 are unique and thus, form unique branches in the tree structure. -
When the
tree()isby()-modulated bylabel, then vertex 3 and 5 are both "software" and thus are merged to a single node in the tree.
The tree() step can also take a side-effect key as an argument. When using this form, the Tree is constructed
lazily, such that it becomes possible to assess its contents as each traverser passes through.
gremlin> g.V().has('name','josh').out('created').values('name').tree('x').select('x')
==>[v[4]:[v[5]:[ripple:[]]]]
==>[v[4]:[v[3]:[lop:[]],v[5]:[ripple:[]]]]
g.V().has('name','josh').out('created').values('name').tree('x').select('x')
You can use cap() step to force tree() to consume the traversal stream eagerly and output results similar to prior
examples.
gremlin> g.V().has('name','josh').out('created').values('name').tree('x').cap('x')
==>[v[4]:[v[3]:[lop:[]],v[5]:[ripple:[]]]]
g.V().has('name','josh').out('created').values('name').tree('x').cap('x')
Additional References
Trim Step
The trim()-step (map) returns a string with leading and leading whitespace removed. Null values are not processed and remain
as null when returned. If the incoming traverser is a non-String value then an IllegalArgumentException will be thrown.
gremlin> g.inject(" hello ", " world ", null).trim()
==>hello
==>world
==>null
gremlin> g.inject([" hello ", " world ", null]).trim(Scope.local) //// (1)
==>[hello,world,null]
g.inject(" hello ", " world ", null).trim()
g.inject([" hello ", " world ", null]).trim(Scope.local) //1
-
Use
Scope.localto operate on individual string elements inside incoming list, which will return a list.
Unfold Step
If the object reaching unfold() (flatMap) is an iterator, iterable, or map, then it is unrolled into a linear
form. If not, then the object is simply emitted. Please see fold() step for the inverse behavior.
gremlin> g.V(1).out().fold().inject('gremlin',[1.23,2.34])
==>gremlin
==>[1.23,2.34]
==>[v[3],v[2],v[4]]
gremlin> g.V(1).out().fold().inject('gremlin',[1.23,2.34]).unfold()
==>gremlin
==>1.23
==>2.34
==>v[3]
==>v[2]
==>v[4]
g.V(1).out().fold().inject('gremlin',[1.23,2.34])
g.V(1).out().fold().inject('gremlin',[1.23,2.34]).unfold()
Note that unfold() does not recursively unroll iterators. Instead, repeat() can be used to for recursive unrolling.
gremlin> inject(1,[2,3,[4,5,[6]]])
==>1
==>[2,3,[4,5,[6]]]
gremlin> inject(1,[2,3,[4,5,[6]]]).unfold()
==>1
==>2
==>3
==>[4,5,[6]]
gremlin> inject(1,[2,3,[4,5,[6]]]).repeat(unfold()).until(count(local).is(1)).unfold()
==>1
==>2
==>3
==>4
==>5
==>6
inject(1,[2,3,[4,5,[6]]])
inject(1,[2,3,[4,5,[6]]]).unfold()
inject(1,[2,3,[4,5,[6]]]).repeat(unfold()).until(count(local).is(1)).unfold()
Additional References
Union Step
The union()-step (branch) supports the merging of the results of an arbitrary number of traversals. When a
traverser reaches a union()-step, it is copied to each of its internal steps. The traversers emitted from union()
are the outputs of the respective internal traversals.
gremlin> g.V(4).union(
__.in().values('age'),
out().values('lang'))
==>29
==>java
==>java
gremlin> g.V(4).union(
__.in().values('age'),
out().values('lang')).path()
==>[v[4],v[1],29]
==>[v[4],v[5],java]
==>[v[4],v[3],java]
gremlin> g.union(V().has('person','name','vadas'),
V().has('software','name','lop').in('created'))
==>v[2]
==>v[1]
==>v[4]
==>v[6]
g.V(4).union(
__.in().values('age'),
out().values('lang'))
g.V(4).union(
__.in().values('age'),
out().values('lang')).path()
g.union(V().has('person','name','vadas'),
V().has('software','name','lop').in('created'))
Additional References
Until Step
The until-step is not an actual step, but is instead a step modulator for repeat() (find more
documentation on the until() there).
Additional References
V Step
The V()-step is meant to read vertices from the graph and is usually used to start a GraphTraversal, but can also
be used mid-traversal.
gremlin> g.V(1) //// (1)
==>v[1]
gremlin> g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person') //// (2)
==>e[0][1-uses->3]
==>e[13][1-uses->5]
==>e[14][2-uses->3]
==>e[15][2-uses->5]
==>e[16][4-uses->3]
==>e[17][4-uses->5]
g.V(1) //// (1)
g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person') //2
-
Find the vertex by its unique identifier (i.e.
T.id) - not all graphs will use a numeric value for their identifier. -
An example where
V()is used both as a start step and in the middle of a traversal.
|
Note
|
Whether a mid-traversal V() uses an index or not, depends on a) whether suitable index exists and b) if the
particular graph system provider implemented this functionality.
|
gremlin> g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person').toString() //// (1)
==>[GraphStep(vertex,[]), HasStep([name.within([marko, vadas, josh])])@[person], GraphStep(vertex,[]), HasStep([name.within([lop, ripple])]), AddEdgeStepPlaceholder]
gremlin> g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person').iterate().toString() //// (2)
==>[TinkerGraphStep(vertex,[name.within([marko, vadas, josh])])@[person], TinkerGraphStep(vertex,[name.within([lop, ripple])]), AddEdgeStep({label=[uses], ~from=[[SelectOneStep(last,person,null)]]}), DiscardStep]
g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person').toString() //// (1)
g.V().has('name', within('marko', 'vadas', 'josh')).as('person').
V().has('name', within('lop', 'ripple')).addE('uses').from('person').iterate().toString() //2
-
Normally the
V()-step will iterate over all vertices. However, graph strategies can foldHasContainer's into aGraphStepto allow index lookups. -
Whether the graph system provider supports mid-traversal
V()index lookups or not can easily be determined by inspecting thetoString()output of the iterated traversal. Ifhasconditions were folded into theV()-step, an index - if one exists - will be used.
Additional References
Value Step
The value()-step (map) takes a Property and extracts the value from it.
gremlin> g.V(1).properties().value()
==>marko
==>san diego
==>santa cruz
==>brussels
==>santa fe
gremlin> g.V(1).properties().properties().value()
==>1997
==>2001
==>2001
==>2004
==>2004
==>2005
==>2005
g.V(1).properties().value()
g.V(1).properties().properties().value()
Additional References
ValueMap Step
The valueMap()-step yields a Map representation of the properties of an element.
|
Important
|
This step is the precursor to the elementMap()-step. Users should typically
choose elementMap() unless they utilize multi-properties. elementMap() effectively mimics the functionality of
valueMap(true).by(unfold()) as a single step.
|
gremlin> g.V().valueMap()
==>[name:[marko],age:[29]]
==>[name:[vadas],age:[27]]
==>[name:[lop],lang:[java]]
==>[name:[josh],age:[32]]
==>[name:[ripple],lang:[java]]
==>[name:[peter],age:[35]]
gremlin> g.V().valueMap('age')
==>[age:[29]]
==>[age:[27]]
==>[]
==>[age:[32]]
==>[]
==>[age:[35]]
gremlin> g.V().valueMap('age','blah')
==>[age:[29]]
==>[age:[27]]
==>[]
==>[age:[32]]
==>[]
==>[age:[35]]
gremlin> g.E().valueMap()
==>[weight:0.5]
==>[weight:1.0]
==>[weight:0.4]
==>[weight:1.0]
==>[weight:0.4]
==>[weight:0.2]
g.V().valueMap()
g.V().valueMap('age')
g.V().valueMap('age','blah')
g.E().valueMap()
It is important to note that the map of a vertex maintains a list of values for each key. The map of an edge or vertex-property represents a single property (not a list). The reason is that vertices in TinkerPop leverage vertex properties which support multiple values per key. Using the "The Crew" toy graph, the point is made explicit.
gremlin> g.V().valueMap()
==>[name:[marko],location:[san diego,santa cruz,brussels,santa fe]]
==>[name:[stephen],location:[centreville,dulles,purcellville]]
==>[name:[matthias],location:[bremen,baltimore,oakland,seattle]]
==>[name:[daniel],location:[spremberg,kaiserslautern,aachen]]
==>[name:[gremlin]]
==>[name:[tinkergraph]]
gremlin> g.V().has('name','marko').properties('location')
==>vp[location->san diego]
==>vp[location->santa cruz]
==>vp[location->brussels]
==>vp[location->santa fe]
gremlin> g.V().has('name','marko').properties('location').valueMap()
==>[startTime:1997,endTime:2001]
==>[startTime:2001,endTime:2004]
==>[startTime:2004,endTime:2005]
==>[startTime:2005]
g.V().valueMap()
g.V().has('name','marko').properties('location')
g.V().has('name','marko').properties('location').valueMap()
To turn list of values into single items, the by() modulator can be used as shown below.
gremlin> g.V().valueMap().by(unfold())
==>[name:marko,location:san diego]
==>[name:stephen,location:centreville]
==>[name:matthias,location:bremen]
==>[name:daniel,location:spremberg]
==>[name:gremlin]
==>[name:tinkergraph]
gremlin> g.V().valueMap('name','location').by(unfold())
==>[name:marko,location:san diego]
==>[name:stephen,location:centreville]
==>[name:matthias,location:bremen]
==>[name:daniel,location:spremberg]
==>[name:gremlin]
==>[name:tinkergraph]
g.V().valueMap().by(unfold())
g.V().valueMap('name','location').by(unfold())
If the id, label, key, and value of the Element is desired, then the with() modulator can be used to
trigger its insertion into the returned map.
gremlin> g.V().hasLabel('person').valueMap().with(WithOptions.tokens)
==>[id:1,label:person,name:[marko],location:[san diego,santa cruz,brussels,santa fe]]
==>[id:7,label:person,name:[stephen],location:[centreville,dulles,purcellville]]
==>[id:8,label:person,name:[matthias],location:[bremen,baltimore,oakland,seattle]]
==>[id:9,label:person,name:[daniel],location:[spremberg,kaiserslautern,aachen]]
gremlin> g.V().hasLabel('person').valueMap('name').with(WithOptions.tokens, WithOptions.labels)
==>[label:person,name:[marko]]
==>[label:person,name:[stephen]]
==>[label:person,name:[matthias]]
==>[label:person,name:[daniel]]
gremlin> g.V().hasLabel('person').properties('location').valueMap().with(WithOptions.tokens, WithOptions.values)
==>[value:san diego,startTime:1997,endTime:2001]
==>[value:santa cruz,startTime:2001,endTime:2004]
==>[value:brussels,startTime:2004,endTime:2005]
==>[value:santa fe,startTime:2005]
==>[value:centreville,startTime:1990,endTime:2000]
==>[value:dulles,startTime:2000,endTime:2006]
==>[value:purcellville,startTime:2006]
==>[value:bremen,startTime:2004,endTime:2007]
==>[value:baltimore,startTime:2007,endTime:2011]
==>[value:oakland,startTime:2011,endTime:2014]
==>[value:seattle,startTime:2014]
==>[value:spremberg,startTime:1982,endTime:2005]
==>[value:kaiserslautern,startTime:2005,endTime:2009]
==>[value:aachen,startTime:2009]
g.V().hasLabel('person').valueMap().with(WithOptions.tokens)
g.V().hasLabel('person').valueMap('name').with(WithOptions.tokens, WithOptions.labels)
g.V().hasLabel('person').properties('location').valueMap().with(WithOptions.tokens, WithOptions.values)
Additional References
Values Step
The values()-step (map) extracts the values of properties from an Element in the traversal stream.
gremlin> g.V(1).values()
==>marko
==>san diego
==>santa cruz
==>brussels
==>santa fe
gremlin> g.V(1).values('location')
==>san diego
==>santa cruz
==>brussels
==>santa fe
gremlin> g.V(1).properties('location').values()
==>1997
==>2001
==>2001
==>2004
==>2004
==>2005
==>2005
g.V(1).values()
g.V(1).values('location')
g.V(1).properties('location').values()
Additional References
Vertex Steps
The vertex steps (flatMap) are fundamental to the Gremlin language. Via these steps, its possible to "move" on the graph — i.e. traverse.
-
out(string…): Move to the outgoing adjacent vertices given the edge labels. -
in(string…): Move to the incoming adjacent vertices given the edge labels. -
both(string…): Move to both the incoming and outgoing adjacent vertices given the edge labels. -
outE(string…): Move to the outgoing incident edges given the edge labels. -
inE(string…): Move to the incoming incident edges given the edge labels. -
bothE(string…): Move to both the incoming and outgoing incident edges given the edge labels. -
outV(): Move to the outgoing vertex. -
inV(): Move to the incoming vertex. -
bothV(): Move to both vertices. -
otherV(): Move to the vertex that was not the vertex that was moved from.
|
Groovy
|
The term |
|
Javascript
|
The term |
|
Python
|
The term |
gremlin> g.V(4)
==>v[4]
gremlin> g.V(4).outE() //// (1)
==>e[10][4-created->5]
==>e[11][4-created->3]
gremlin> g.V(4).inE('knows') //// (2)
==>e[8][1-knows->4]
gremlin> g.V(4).inE('created') //// (3)
gremlin> g.V(4).bothE('knows','created','blah')
==>e[10][4-created->5]
==>e[11][4-created->3]
==>e[8][1-knows->4]
gremlin> g.V(4).bothE('knows','created','blah').otherV()
==>v[5]
==>v[3]
==>v[1]
gremlin> g.V(4).both('knows','created','blah')
==>v[5]
==>v[3]
==>v[1]
gremlin> g.V(4).outE().inV() //// (4)
==>v[5]
==>v[3]
gremlin> g.V(4).out() //// (5)
==>v[5]
==>v[3]
gremlin> g.V(4).inE().outV()
==>v[1]
gremlin> g.V(4).inE().bothV()
==>v[1]
==>v[4]
g.V(4)
g.V(4).outE() //// (1)
g.V(4).inE('knows') //// (2)
g.V(4).inE('created') //// (3)
g.V(4).bothE('knows','created','blah')
g.V(4).bothE('knows','created','blah').otherV()
g.V(4).both('knows','created','blah')
g.V(4).outE().inV() //// (4)
g.V(4).out() //// (5)
g.V(4).inE().outV()
g.V(4).inE().bothV()
-
All outgoing edges.
-
All incoming knows-edges.
-
All incoming created-edges.
-
Moving forward touching edges and vertices.
-
Moving forward only touching vertices.
Additional References
Where Step
The where()-step filters the current object based on either the object itself (Scope.local) or the path history
of the object (Scope.global) (filter). This step is typically used in conjunction with either
match()-step or select()-step, but can be used in isolation.
gremlin> g.V(1).as('a').out('created').in('created').where(neq('a')) //// (1)
==>v[4]
==>v[6]
gremlin> g.withSideEffect('a',['josh','peter']).V(1).out('created').in('created').values('name').where(within('a')) //// (2)
==>josh
==>peter
gremlin> g.V(1).out('created').in('created').where(out('created').count().is(gt(1))).values('name') //// (3)
==>josh
g.V(1).as('a').out('created').in('created').where(neq('a')) //// (1)
g.withSideEffect('a',['josh','peter']).V(1).out('created').in('created').values('name').where(within('a')) //// (2)
g.V(1).out('created').in('created').where(out('created').count().is(gt(1))).values('name') //3
-
Who are marko’s collaborators, where marko can not be his own collaborator? (predicate)
-
Of the co-creators of marko, only keep those whose name is josh or peter. (using a sideEffect)
-
Which of marko’s collaborators have worked on more than 1 project? (using a traversal)
|
Important
|
Please see match().where() and select().where()
for how where() can be used in conjunction with Map<String,Object> projecting steps — i.e. Scope.local.
|
A few more examples of filtering an arbitrary object based on a anonymous traversal is provided below.
gremlin> g.V().where(out('created')).values('name') //// (1)
==>marko
==>josh
==>peter
gremlin> g.V().out('knows').where(out('created')).values('name') //// (2)
==>josh
gremlin> g.V().where(out('created').count().is(gte(2))).values('name') //// (3)
==>josh
gremlin> g.V().where(out('knows').where(out('created'))).values('name') //// (4)
==>marko
gremlin> g.V().where(__.not(out('created'))).where(__.in('knows')).values('name') //// (5)
==>vadas
gremlin> g.V().where(__.not(out('created')).and().in('knows')).values('name') //// (6)
==>vadas
gremlin> g.V().as('a').out('knows').as('b').
where('a',gt('b')).
by('age').
select('a','b').
by('name') //// (7)
==>[a:marko,b:vadas]
gremlin> g.V().as('a').out('knows').as('b').
where('a',gt('b').or(eq('b'))).
by('age').
by('age').
by(__.in('knows').values('age')).
select('a','b').
by('name') //// (8)
==>[a:marko,b:vadas]
==>[a:marko,b:josh]
gremlin> g.V().as('a').both().both().as('b').
where('a',eq('b')).by('age') //// (9)
==>v[1]
==>v[1]
==>v[1]
==>v[2]
==>v[4]
==>v[4]
==>v[4]
==>v[6]
g.V().where(out('created')).values('name') //// (1)
g.V().out('knows').where(out('created')).values('name') //// (2)
g.V().where(out('created').count().is(gte(2))).values('name') //// (3)
g.V().where(out('knows').where(out('created'))).values('name') //// (4)
g.V().where(__.not(out('created'))).where(__.in('knows')).values('name') //// (5)
g.V().where(__.not(out('created')).and().in('knows')).values('name') //// (6)
g.V().as('a').out('knows').as('b').
where('a',gt('b')).
by('age').
select('a','b').
by('name') //// (7)
g.V().as('a').out('knows').as('b').
where('a',gt('b').or(eq('b'))).
by('age').
by('age').
by(__.in('knows').values('age')).
select('a','b').
by('name') //// (8)
g.V().as('a').both().both().as('b').
where('a',eq('b')).by('age') //9
-
What are the names of the people who have created a project?
-
What are the names of the people that are known by someone one and have created a project?
-
What are the names of the people how have created two or more projects?
-
What are the names of the people who know someone that has created a project? (This only works in OLTP — see the
WARNINGbelow) -
What are the names of the people who have not created anything, but are known by someone?
-
The concatenation of
where()-steps is the same as a singlewhere()-step with an and’d clause. -
Marko knows josh and vadas but is only older than vadas.
-
Marko is younger than josh, but josh knows someone equal in age to marko (which is marko).
-
The "age" property is not productive for all vertices and therefore those values are filtered.
|
Warning
|
The anonymous traversal of where() processes the current object "locally". In OLAP, where the atomic unit
of computing is the vertex and its local "star graph," it is important that the anonymous traversal does not leave
the confines of the vertex’s star graph. In other words, it can not traverse to an adjacent vertex’s properties or
edges.
|
Additional References
With Step
The with()-step is not an actual step, but is instead a "step modulator" which modifies the behavior of the step
prior to it. The with()-step provides additional "configuration" information to steps that implement the Configuring
interface. Steps that allow for this type of modulation will explicitly state so in their documentation.
|
Javascript
|
The term |
|
Python
|
The term |
Write Step
The write()-step is not really a "step" but a step modulator in that it modifies the functionality of the io()-step.
More specifically, it tells the io()-step that it is expected to use its configuration to write data to some
location. Please see the documentation for io()-step for more complete details on usage.
Additional References
Traversal Parameterization
A subset of gremlin steps are able to accept parameterized arguments also known as GValues. GValues can be used to
provide protection against gremlin-injection attacks in cases where untrusted and unsanitized inputs must be passed as
step arguments. Additionally, use of GValues may offer performance benefits in certain environments by making use of
some query caching capabilities. Note that the reference implementation of the gremlin language and gremlin-server do
not have such a query caching mechanism, and thus will not see any performance improvements through parameterization. Users
should consult the documentation of their specific graph system details of potential performance benefits via parameterization.
|
Note
|
There are unique considerations regarding parameters when using gremlin-groovy scripts. Groovy allows for parameterization
at arbitrary points in the query in addition to the subset of parameterizable steps documented here. Groovy is also bound by
a comparatively slow script compilation, which makes parameterization essential for performant execution of gremlin-groovy scripts.
|
| Step | Parameterizable arguments |
|---|---|
String edgeLabel |
|
String vertexLabel |
|
String… edgeLabels |
|
String… edgeLabels |
|
Map params |
|
Vertex fromVertex |
|
String label |
|
Object id, Object… ids |
|
String label, String… labels |
|
Object value, Object… values |
|
String… edgeLabels |
|
String… edgeLabels |
|
Object value |
|
Long limit |
|
Map searchCreate |
|
Map searchCreate |
|
Map m |
|
String… edgeLabels |
|
String… edgeLabels |
|
Object value, Object… values |
|
Long low, Long high |
|
Long limit |
|
Long limit |
|
String… edgeLabels, Vertex toVertex |
|
String… edgeLabels |
Additional References
A Note on Predicates
A P is a predicate of the form Function<Object,Boolean>. That is, given some object, return true or false. Gremlin
supports text predicates (TextP), which are specialized predicates that only work on String values and are of the form Function<String,Boolean>. Additionally, type predicate (P.typeOf) supports filtering traversers based on their runtime types. The provided predicates are outlined in the table below and are used in various steps such as has()-step, where()-step, is()-step, etc.
| Predicate | Description |
|---|---|
|
Is the incoming object equal to the provided object? |
|
Is the incoming object not equal to the provided object? |
|
Is the incoming number less than the provided number? |
|
Is the incoming number less than or equal to the provided number? |
|
Is the incoming number greater than the provided number? |
|
Is the incoming number greater than or equal to the provided number? |
|
Is the incoming number greater than the first provided number and less than the second? |
|
Is the incoming number less than the first provided number or greater than the second? |
|
Is the incoming number greater than or equal to the first provided number and less than the second? |
|
Is the incoming object in the array of provided objects? |
|
Is the incoming object not in the array of the provided objects? |
|
Is the incoming object of the type indicated by the provided |
|
Is the incoming object of the type indicated by the provided |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Does the incoming |
|
Note
|
The TinkerPop reference implementation uses the Java Pattern and Matcher classes for it regular expression
engine. Other implementations may decide to use a different regular expression engine. It’s a good idea to check
the documentation for the implementation you are using to verify the allowed regular expression syntax.
|
gremlin> eq(2)
==>eq(2)
gremlin> not(neq(2)) //// (1)
==>not(neq(2))
gremlin> not(within('a','b','c'))
==>not(within([a, b, c]))
gremlin> not(within('a','b','c')).test('d') //// (2)
==>true
gremlin> not(within('a','b','c')).test('a')
==>false
gremlin> within(1,2,3).and(not(eq(2))).test(3) //// (3)
==>true
gremlin> inside(1,4).or(eq(5)).test(3) //// (4)
==>true
gremlin> inside(1,4).or(eq(5)).test(5)
==>true
gremlin> between(1,2) //// (5)
==>and(gte(1), lt(2))
gremlin> not(between(1,2))
==>or(not(gte(1)), not(lt(2)))
eq(2)
not(neq(2)) //// (1)
not(within('a','b','c'))
not(within('a','b','c')).test('d') //// (2)
not(within('a','b','c')).test('a')
within(1,2,3).and(not(eq(2))).test(3) //// (3)
inside(1,4).or(eq(5)).test(3) //// (4)
inside(1,4).or(eq(5)).test(5)
between(1,2) //// (5)
not(between(1,2))
-
The
not()of aP-predicate is anotherP-predicate. -
P-predicates are arguments to various steps which internallytest()the incoming value. -
P-predicates can be and’d together. -
P-predicates can be or' together. -
and()is aP-predicate and thus, aP-predicate can be composed of multipleP-predicates.
|
Tip
|
To reduce the verbosity of predicate expressions, it is good to
import static org.apache.tinkerpop.gremlin.process.traversal.P.*.
|
The following example demonstrates how the regex() predicate is used and it demonstrates an important point. When
using regex(), the string is considered a match to the pattern if any substring matches the pattern. It is therefore
important to use the appropriate boundary matchers (e.g. $ for end of a line) to ensure a proper match.
gremlin> g.V().has('person', 'name', regex('peter')).values('name')
==>peter
gremlin> g.V().has('person', 'name', regex('r')).values('name')
==>marko
==>peter
gremlin> g.V().has('person', 'name', regex('r$')).values('name')
==>peter
g.V().has('person', 'name', regex('peter')).values('name')
g.V().has('person', 'name', regex('r')).values('name')
g.V().has('person', 'name', regex('r$')).values('name')
Finally, note that where()-step takes a P<String>. The provided string value refers to a variable
binding, not to the explicit string value.
gremlin> g.V().as('a').both().both().as('b').count()
==>30
gremlin> g.V().as('a').both().both().as('b').where('a',neq('b')).count()
==>18
g.V().as('a').both().both().as('b').count()
g.V().as('a').both().both().as('b').where('a',neq('b')).count()
A Note on Types
Gremlin steps typically operate over a handful of types that are mostly standard across graph systems. There are the
common numeric types like Integer, Long, Double, general types like String, and Boolean, container types like
List, Set, and Map, and structural types particular to graphs such as Vertex, Edge, and Property. During
traversal execution, it’s common to encounter mixed data types, especially when extracting values from multiple
properties or when working with heterogeneous data that may have been stored inconsistently over time.
Gremlin identifies these types in the GType enumeration, offering a clear presentation of the standard data types one
might typically encounter with Gremlin. This enumeration is an important part of the Gremlin language in that it acts
as the argument to the typeOf() predicate used for filtering values based on their runtime data type.
GType Enums
GType consists of the following enumerations:
-
Numeric types:
INT,LONG,DOUBLE,FLOAT,BYTE,SHORT,BIGDECIMAL,BIGINT -
General types:
STRING,BOOLEAN,CHAR,UUID,BINARY -
Collection types:
LIST,SET,MAP -
Graph types:
VERTEX,EDGE,PROPERTY,VPROPERTY,PATH,TREE,GRAPH -
Temporal types:
DATETIME,DURATION -
Special types:
NULL,NUMBER(supertype for all numeric types)
As mentioned, the typeOf() predicate becomes particularly useful when dealing with mixed data scenarios. For example,
you would like to only return the integer values of a set of properties for further processing:
gremlin> g.V().values('age','name').is(P.typeOf(GType.INT)).asNumber(GType.SHORT)
==>29
==>27
==>32
==>35
g.V().values('age','name').is(P.typeOf(GType.INT)).asNumber(GType.SHORT)
The NUMBER type allows for broader type-based filtering without needing to specify each individual numeric type:
gremlin> g.union(V(), E()).values().is(P.typeOf(GType.NUMBER))
==>29
==>27
==>32
==>35
==>0.5
==>1.0
==>0.4
==>1.0
==>0.4
==>0.2
g.union(V(), E()).values().is(P.typeOf(GType.NUMBER))
Type filtering is also valuable when working with traversals that return mixed graph elements. For example, when a traversal might return both vertices and edges, you can add filter or condition based on the elements of interest:
gremlin> g.V().outE().inV().path().unfold().is(P.typeOf(GType.EDGE))
==>e[9][1-created->3]
==>e[7][1-knows->2]
==>e[8][1-knows->4]
==>e[10][4-created->5]
==>e[11][4-created->3]
==>e[12][6-created->3]
gremlin> g.V().outE().inV().path().unfold().choose(typeOf(VERTEX), values('name'), values('weight'))
==>marko
==>0.4
==>lop
==>marko
==>0.5
==>vadas
==>marko
==>1.0
==>josh
==>josh
==>1.0
==>ripple
==>josh
==>0.4
==>lop
==>peter
==>0.2
==>lop
g.V().outE().inV().path().unfold().is(P.typeOf(GType.EDGE))
g.V().outE().inV().path().unfold().choose(typeOf(VERTEX), values('name'), values('weight'))
GlobalTypeCache
The GlobalTypeCache stores custom types registered by database providers as string-to-class mappings. These registered
type names can then be used with P.typeOf() for type filtering in the traversal. Consult your provider’s documentation
for the correct type names when using provider-specific types.
By default, GType enumerations are registered using their simple class names and can be used as shown below.
gremlin> g.V().values('age','name').is(P.typeOf('Integer'))
==>29
==>27
==>32
==>35
g.V().values('age','name').is(P.typeOf('Integer'))
A Note on Maps
Many steps in Gremlin return Map-based results. Commonly used steps like project(),
'group()', and select() are just some examples of steps that fall into this category.
When working with Map results there are a couple of important things to know.
First, it is important to recognize that there is a bit of a difference in behavior that occurs when using
unfold() on a Map in embedded contexts versus remote contexts. In embedded contexts, an unfolded Map
becomes its composite Map.Entry objects as is typical in Java. The following example demonstrates the basic name/value
pairs that returned:
gremlin> g.V().valueMap('name','age').unfold()
==>name=[marko]
==>age=[29]
==>name=[vadas]
==>age=[27]
==>name=[lop]
==>name=[josh]
==>age=[32]
==>name=[ripple]
==>name=[peter]
==>age=[35]
g.V().valueMap('name','age').unfold()
In remote contexts, an unfolded Map becomes Map.Entry on the server as in the embedded case, but is returned to the
application as a Map with one entry. The slight difference in notation in Gremlin Console is shown in the following
remote example:
gremlin> g.V().valueMap('name','age').unfold()
==>[name:[marko]]
==>[age:[29]]
==>[name:[vadas]]
==>[age:[27]]
==>[name:[lop]]
==>[name:[josh]]
==>[age:[32]]
==>[name:[ripple]]
==>[name:[peter]]
==>[age:[35]]
The primary reason for this difference lies in the fact that Gremlin Language Variants, like Python and Go, do not have
a native Map.Entry concept that can be used. The most universal data structure across programming languages is the
Map itself. It is important to note that this transformation from Map.Entry to Map only applies to results
received on the client-side. In other words, if a step was to follow unfold() in the prior example, it would be
dealing with Map.Entry and not a Map, so Gremlin semantics should remain consistent on the server side.
The second issues to consider with steps that return a Map is that access keys on a Map is not always as consistent
as expected. The issue is best demonstrated in some examples:
// note that elements can be grouped by(id), but that same pattern can't be applied to get
// a T.id in a Map
gremlin> g.V().hasLabel('person').both().group().by(id)
==>[1:[v[1],v[1]],2:[v[2]],3:[v[3],v[3],v[3]],4:[v[4]],5:[v[5]]]
gremlin> g.V().hasLabel('person').both().elementMap().group().by(id)
TokenTraversal support of java.util.LinkedHashMap does not allow selection by id
Type ':help' or ':h' for help.
Display stack trace? [yN]
// note that select() can't be used if the key is a non-string
gremlin> g.V().hasLabel('person').both().group().by('age').select(32)
No signature of method: org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.DefaultGraphTraversal.select() is applicable for argument types: (Integer) values: [32]
Possible solutions: reset(), collect(), sleep(long), collect(groovy.lang.Closure), inject(groovy.lang.Closure), split(groovy.lang.Closure)
Type ':help' or ':h' for help.
Display stack trace? [yN]
While this problem might be solved in future versions, the workaround for both cases is to use constant() as shown in the following example:
gremlin> g.V().hasLabel('person').both().group().by(constant(id))
==>[id:[v[3],v[2],v[4],v[1],v[5],v[3],v[1],v[3]]]
gremlin> g.V().hasLabel('person').both().group().by('age').select(constant(32))
==>[v[4]]
g.V().hasLabel('person').both().group().by(constant(id))
g.V().hasLabel('person').both().group().by('age').select(constant(32))
A Note on Barrier Steps
Gremlin is primarily a
lazy, stream processing language. This means that Gremlin fully
processes (to the best of its abilities) any traversers currently in the traversal pipeline before getting more data
from the start/head of the traversal. However, there are numerous situations in which a completely lazy computation
is not possible (or impractical). When a computation is not lazy, a "barrier step" exists. There are three types of
barriers:
-
CollectingBarrierStep: All of the traversers prior to the step are put into a collection and then processed in some way (e.g. ordered) prior to the collection being "drained" one-by-one to the next step. Examples include:order(),sample(),aggregate(),barrier(). -
ReducingBarrierStep: All of the traversers prior to the step are processed by a reduce function and once all the previous traversers are processed, a single "reduced value" traverser is emitted to the next step. Note that the path history leading up to a reducing barrier step is destroyed given its many-to-one nature. Examples include:fold(),count(),sum(),max(),min(). -
SupplyingBarrierStep: All of the traversers prior to the step are iterated (no processing) and then some provided supplier yields a single traverser to continue to the next step. Examples include:cap().
In Gremlin OLAP (see TraversalVertexProgram), a barrier is introduced at the end of
every adjacent vertex step. This means that the traversal does its best to compute as much as
possible at the current, local vertex. What it can’t compute without referencing an adjacent vertex is aggregated
into a barrier collection. When there are no more traversers at the local vertex, the barriered traversers are the
messages that are propagated to remote vertices for further processing.
A Note on Scopes
The Scope enum has two constants: Scope.local and Scope.global. Scope determines whether the particular step
being scoped is with respects to the current object (local) at that step or to the entire stream of objects up to that
step (global).
|
Python
|
The term |
gremlin> g.V().has('name','marko').out('knows').count() //// (1)
==>2
gremlin> g.V().has('name','marko').out('knows').fold().count() //// (2)
==>1
gremlin> g.V().has('name','marko').out('knows').fold().count(local) //// (3)
==>2
gremlin> g.V().has('name','marko').out('knows').fold().count(global) //// (4)
==>1
g.V().has('name','marko').out('knows').count() //// (1)
g.V().has('name','marko').out('knows').fold().count() //// (2)
g.V().has('name','marko').out('knows').fold().count(local) //// (3)
g.V().has('name','marko').out('knows').fold().count(global) //4
-
Marko knows 2 people.
-
A list of Marko’s friends is created and thus, one object is counted (the single list).
-
A list of Marko’s friends is created and a
local-count yields the number of objects in that list. -
count(global)is the same ascount()as the default behavior for most scoped steps isglobal.
The steps that support scoping are:
-
count(): count the local collection or global stream. -
dedup(): dedup the local collection of global stream. -
max(): get the max value in the local collection or global stream. -
mean(): get the mean value in the local collection or global stream. -
min(): get the min value in the local collection or global stream. -
order(): order the objects in the local collection or global stream. -
range(): clip the local collection or global stream. -
limit(): clip the local collection or global stream. -
sample(): sample objects from the local collection or global stream. -
tail(): get the tail of the objects in the local collection or global stream.
A few more examples of the use of Scope are provided below:
gremlin> g.V().both().group().by(label).select('software').dedup(local)
==>[v[3],v[5]]
gremlin> g.V().groupCount().by(label).select(values).min(local)
==>2
gremlin> g.V().groupCount().by(label).order(local).by(values,desc)
==>[person:4,software:2]
gremlin> g.V().fold().sample(local,2)
==>[v[3],v[4]]
g.V().both().group().by(label).select('software').dedup(local)
g.V().groupCount().by(label).select(values).min(local)
g.V().groupCount().by(label).order(local).by(values,desc)
g.V().fold().sample(local,2)
Finally, note that local()-step is a "hard-scoped step" that transforms any internal traversal into a
locally-scoped operation. A contrived example is provided below:
gremlin> g.V().fold().local(unfold().count())
==>6
gremlin> g.V().fold().count(local)
==>6
g.V().fold().local(unfold().count())
g.V().fold().count(local)
A Note On Lambdas
A lambda is a function
that can be referenced by software and thus, passed around like any other piece of data. In Gremlin, lambdas make it
possible to generalize the behavior of a step such that custom steps can be created (on-the-fly) by the user. However,
it is advised to avoid using lambdas if possible.
gremlin> g.V().filter{it.get().value('name') == 'marko'}.
flatMap{it.get().vertices(OUT,'created')}.
map {it.get().value('name')} //// (1)
==>lop
gremlin> g.V().has('name','marko').out('created').values('name') //// (2)
==>lop
g.V().filter{it.get().value('name') == 'marko'}.
flatMap{it.get().vertices(OUT,'created')}.
map {it.get().value('name')} //// (1)
g.V().has('name','marko').out('created').values('name') //2
-
A lambda-rich Gremlin traversal which should and can be avoided. (bad)
-
The same traversal (result), but without using lambdas. (good)
Gremlin attempts to provide the user a comprehensive collection of steps in the hopes that the user will never need to leverage a lambda in practice. It is advised that users only leverage a lambda if and only if there is no corresponding lambda-less step that encompasses the desired functionality. The reason being, lambdas can not be optimized by Gremlin’s compiler strategies as they can not be programmatically inspected (see traversal strategies). It is also not currently possible to send a natively written lambda for remote execution to Gremlin-Server or a driver that supports remote execution.
In many situations where a lambda could be used, either a corresponding step exists or a traversal can be provided in
its place. A TraversalLambda behaves like a typical lambda, but it can be optimized and it yields less objects than
the corresponding pure-lambda form.
gremlin> g.V().out().out().path().by {it.value('name')}.
by {it.value('name')}.
by {g.V(it).in('created').values('name').fold().next()} //// (1)
==>[marko,josh,[josh]]
==>[marko,josh,[marko,josh,peter]]
gremlin> g.V().out().out().path().by('name').
by('name').
by(__.in('created').values('name').fold()) //// (2)
==>[marko,josh,[josh]]
==>[marko,josh,[marko,josh,peter]]
g.V().out().out().path().by {it.value('name')}.
by {it.value('name')}.
by {g.V(it).in('created').values('name').fold().next()} //// (1)
g.V().out().out().path().by('name').
by('name').
by(__.in('created').values('name').fold()) //2
-
The length-3 paths have each of their objects transformed by a lambda. (bad)
-
The length-3 paths have their objects transformed by a lambda-less step and a traversal lambda. (good)
TraversalStrategy
A TraversalStrategy analyzes a Traversal and, if the traversal
meets its criteria, can mutate it accordingly. Traversal strategies are executed at compile-time and form the foundation
of the Gremlin traversal machine’s compiler. There are 5 categories of strategies which are itemized below:
-
There is an application-level feature that can be embedded into the traversal logic (decoration).
-
There is a more efficient way to express the traversal at the TinkerPop level (optimization).
-
There is a more efficient way to express the traversal at the graph system/language/driver level (provider optimization).
-
There are some final adjustments/cleanups/analyses required before executing the traversal (finalization).
-
There are certain traversals that are not legal for the application or traversal engine (verification).
|
Note
|
The explain()-step shows the user how each registered strategy mutates the traversal.
|
TinkerPop ships with a generous number of TraversalStrategy definitions, most of which are applied implicitly when
executing a gremlin traversal. Users and providers can add TraversalStrategy definitions for particular needs. The
following sections detail how traversal strategies are applied and defined and describe a collection of traversal
strategies that are generally useful to end-users.
Application
One can explicitly add or remove TraversalStrategy strategies on the GraphTraversalSource with the withStrategies()
and withoutStrategies() start steps, see the ReadOnlyStrategy and the
barrier() step for examples. End users typically do this as part of issuing a gremlin traversal, either
on a locally opened graph or a remotely accessed graph. However, when configuring Gremlin Server, traversal strategies
can also be applied on exposed GraphTraversalSource instances and as part of an Authorizer implementation, see
Gremlin Server Authorization.
Therefore, one should keep the following in mind when modifying the list of TraversalStrategy strategies:
-
A
TraversalStrategyadded to the traversal can be removed again later on. An example is theconf/gremlin-server-modern-readonly.yamlfile from the Gremlin Server distribution, which applies theReadOnlyStrategyto theGraphTraversalSourcethat remote clients can connect to. However, a remote client can remove it on its turn by applying thewithoutStrategies()step with theReadOnlyStrategy. -
When a
TraversalStrategyof a particular type is added, it replaces any instances of its type that exist prior to it. Multiple instances of aTraversalStrategycan therefore not be registered and their functionality is no way merged automatically. Therefore, if there is a particular strategy registered whose functionality needs to be changed it is important to either find and modify the existing instance or construct a new one copying the options to keep from the old to the new instance.
Definition
A simple OptimizationStrategy is the IdentityRemovalStrategy.
public final class IdentityRemovalStrategy extends AbstractTraversalStrategy<TraversalStrategy.OptimizationStrategy> implements TraversalStrategy.OptimizationStrategy {
private static final IdentityRemovalStrategy INSTANCE = new IdentityRemovalStrategy();
private IdentityRemovalStrategy() {
}
@Override
public void apply(Traversal.Admin<?, ?> traversal) {
if (traversal.getSteps().size() <= 1)
return;
for (IdentityStep<?> identityStep : TraversalHelper.getStepsOfClass(IdentityStep.class, traversal)) {
if (identityStep.getLabels().isEmpty() || !(identityStep.getPreviousStep() instanceof EmptyStep)) {
TraversalHelper.copyLabels(identityStep, identityStep.getPreviousStep(), false);
traversal.removeStep(identityStep);
}
}
}
public static IdentityRemovalStrategy instance() {
return INSTANCE;
}
}
This strategy simply removes any IdentityStep steps in the Traversal as aStep().identity().identity().bStep()
is equivalent to aStep().bStep(). For those traversal strategies that require other strategies to execute prior or
post to the strategy, then the following two methods can be defined in TraversalStrategy (with defaults being an
empty set). If the TraversalStrategy is in a particular traversal category (i.e. decoration, optimization,
provider-optimization, finalization, or verification), then priors and posts are only possible within the respective category.
public Set<Class<? extends S>> applyPrior();
public Set<Class<? extends S>> applyPost();
|
Important
|
TraversalStrategy categories are sorted within their category and the categories are then executed in
the following order: decoration, optimization, provider optimization, finalization, and verification. If a designed strategy
does not fit cleanly into these categories, then it can implement TraversalStrategy and its prior and posts can reference
strategies within any category. However, such generalization are strongly discouraged.
|
An example of a GraphSystemOptimizationStrategy is provided below.
g.V().has('name','marko')
The expression above can be executed in a O(|V|) or O(log(|V|) fashion in TinkerGraph
depending on whether there is or is not an index defined for "name."
public final class TinkerGraphStepStrategy extends AbstractTraversalStrategy<TraversalStrategy.ProviderOptimizationStrategy> implements TraversalStrategy.ProviderOptimizationStrategy {
private static final TinkerGraphStepStrategy INSTANCE = new TinkerGraphStepStrategy();
private TinkerGraphStepStrategy() {
}
@Override
public void apply(Traversal.Admin<?, ?> traversal) {
if (TraversalHelper.onGraphComputer(traversal))
return;
for (GraphStepContract originalGraphStep : TraversalHelper.getStepsOfAssignableClass(GraphStepContract.class, traversal)) {
TinkerGraphStep<?, ?> tinkerGraphStep = new TinkerGraphStep<>(originalGraphStep);
TraversalHelper.replaceStep(originalGraphStep, tinkerGraphStep, traversal);
Step<?, ?> currentStep = tinkerGraphStep.getNextStep();
while (currentStep instanceof HasStep || currentStep instanceof NoOpBarrierStep) {
if (currentStep instanceof HasStep) {
for (HasContainer hasContainer : ((HasContainerHolder) currentStep).getHasContainers()) {
if (!GraphStep.processHasContainerIds(tinkerGraphStep, hasContainer))
tinkerGraphStep.addHasContainer(hasContainer);
}
TraversalHelper.copyLabels(currentStep, currentStep.getPreviousStep(), false);
traversal.removeStep(currentStep);
}
currentStep = currentStep.getNextStep();
}
}
}
public static TinkerGraphStepStrategy instance() {
return INSTANCE;
}
}
The traversal is redefined by simply taking a chain of has()-steps after g.V() (TinkerGraphStep) and providing
their HasContainers to TinkerGraphStep. Then its up to TinkerGraphStep to determine if an appropriate index exists.
Given that the strategy uses non-TinkerPop provided steps, it should go into the ProviderOptimizationStrategy category
to ensure the added step does not interfere with the assumptions of the OptimizationStrategy strategies.
gremlin> t = g.V().has('name','marko'); null
==>null
gremlin> t.toString()
==>[GraphStep(vertex,[]), HasStep([name.eq(marko)])]
gremlin> t.iterate(); null
==>null
gremlin> t.toString()
==>[TinkerGraphStep(vertex,[name.eq(marko)]), DiscardStep]
t = g.V().has('name','marko'); null
t.toString()
t.iterate(); null
t.toString()
|
Warning
|
The reason that OptimizationStrategy and ProviderOptimizationStrategy are two different categories is
that optimization strategies should only rewrite the traversal using TinkerPop steps. This ensures that the
optimizations executed at the end of the optimization strategy round are TinkerPop compliant. From there, provider
optimizations can analyze the traversal and rewrite the traversal as desired using graph system specific steps (e.g.
replacing GraphStep.HasStep…HasStep with TinkerGraphStep). If provider optimizations use graph system specific
steps and implement OptimizationStrategy, then other TinkerPop optimizations may fail to optimize the traversal or
mis-understand the graph system specific step behaviors (e.g. ProviderVertexStep extends VertexStep) and yield
incorrect semantics.
|
Finally, here is a complicated traversal that has various components that are optimized by the default TinkerPop strategies.
gremlin> g.V().hasLabel('person'). //// (1)
and(has('name'), //// (2)
has('name','marko'),
filter(has('age',gt(20)))). //// (3)
match(__.as('a').has('age',lt(32)), //// (4)
__.as('a').repeat(outE().inV()).times(2).as('b')). //// (5)
where('a',neq('b')). //// (6)
where(__.as('b').both().count().is(gt(1))). //// (7)
select('b'). //// (8)
groupCount().
by(out().count()). //// (9)
explain()
==>Traversal Explanation
================================================================================================================================================================================================================================================
Original Traversal [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)]]), WherePredicateStep(a,neq(b)), WhereTraversalStep([WhereStartStep(b), VertexStep(BOTH,vertex), CountGlobalStep, IsStep(gt(1))]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,vertex), CountGlobalStep])]
ConnectiveStrategy [D] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)]]), WherePredicateStep(a,neq(b)), WhereTraversalStep([WhereStartStep(b), VertexStep(BOTH,vertex), CountGlobalStep, IsStep(gt(1))]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,vertex), CountGlobalStep])]
IdentityRemovalStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)]]), WherePredicateStep(a,neq(b)), WhereTraversalStep([WhereStartStep(b), VertexStep(BOTH,vertex), CountGlobalStep, IsStep(gt(1))]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,vertex), CountGlobalStep])]
MatchPredicateStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), CountGlobalStep, Is
Step(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStep(OUT,vertex), CountGlobalStep])]
FilterRankingStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), CountGlobalStep, Is
Step(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStep(OUT,vertex), CountGlobalStep])]
CountStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), RangeGlobalStep(0,2
), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStep(OUT,vertex), CountGlobalStep])]
EarlyLimitStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), AndStep([[TraversalFilterStep([PropertiesStep([name],value)])], [HasStep([name.eq(marko)])], [TraversalFilterStep([HasStep([age.gt(20)])])]]), Mat
chStep(null,AND,[[MatchStartStep(a), HasStep([age.lt(32)]), MatchEndStep(null)], [MatchStartStep(a), RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)),
MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), RangeGlobalStep(0,2
), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStep(OUT,vertex), CountGlobalStep])]
InlineFilterStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],value)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a)
, RepeatStep([VertexStep(OUT,edge), EdgeVertexStep(IN), RepeatEndStep],until(loops(2)),emit(false)), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [Match
StartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountS
tep([VertexStep(OUT,vertex), CountGlobalStep])]
IncidentToAdjacentStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],value)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a)
, RepeatStep([VertexStepPlaceholder(OUT,vertex), RepeatEndStep],until(loops(2)),emit(false)), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartSt
ep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,vertex), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([Ve
rtexStep(OUT,vertex), CountGlobalStep])]
AdjacentToIncidentStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), RepeatStep([VertexStepPlaceholder(OUT,vertex), RepeatEndStep],until(loops(2)),emit(false)), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStar
tStep(b), WhereTraversalStep([WhereStartStep(null), VertexStepPlaceholder(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupC
ountStep([VertexStepPlaceholder(OUT,edge), CountGlobalStep])]
ByModulatorOptimizationStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), RepeatStep([VertexStepPlaceholder(OUT,vertex), RepeatEndStep],until(loops(2)),emit(false)), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStar
tStep(b), WhereTraversalStep([WhereStartStep(null), VertexStepPlaceholder(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupC
ountStep([VertexStepPlaceholder(OUT,edge), CountGlobalStep])]
RepeatUnrollStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), VertexStepPlaceholder(OUT,vertex), VertexStepPlaceholder(OUT,vertex), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTravers
alStep([WhereStartStep(null), VertexStepPlaceholder(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStepPl
aceholder(OUT,edge), CountGlobalStep])]
PathRetractionStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), VertexStepPlaceholder(OUT,vertex), VertexStepPlaceholder(OUT,vertex), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep(b), WhereTravers
alStep([WhereStartStep(null), VertexStepPlaceholder(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([VertexStepPl
aceholder(OUT,edge), CountGlobalStep])]
LazyBarrierStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), VertexStepPlaceholder(OUT,vertex), NoOpBarrierStep(2500), VertexStepPlaceholder(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEn
dStep(null)], [MatchStartStep(b), WhereTraversalStep([WhereStartStep(null), VertexStepPlaceholder(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneS
tep(last,b,null), GroupCountStep([VertexStepPlaceholder(OUT,edge), CountGlobalStep])]
GValueReductionStrategy [O] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), VertexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchSt
artStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep(
[VertexStep(OUT,edge), CountGlobalStep])]
TinkerGraphCountStrategy [P] [GraphStep(vertex,[]), HasStep([~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep
(a), VertexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchSt
artStep(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep(
[VertexStep(OUT,edge), CountGlobalStep])]
TinkerGraphStepStrategy [P] [TinkerGraphStep(vertex,[~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a), Ve
rtexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep
(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,edge), CountGlobalStep])]
ProfileStrategy [F] [TinkerGraphStep(vertex,[~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a), Ve
rtexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep
(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,edge), CountGlobalStep])]
StandardVerificationStrategy [V] [TinkerGraphStep(vertex,[~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a), Ve
rtexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep
(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,edge), CountGlobalStep])]
Final Traversal [TinkerGraphStep(vertex,[~label.eq(person)]), TraversalFilterStep([PropertiesStep([name],property)]), HasStep([name.eq(marko), age.gt(20), age.lt(32)])@[a], MatchStep(null,AND,[[MatchStartStep(a), Ve
rtexStep(OUT,vertex), NoOpBarrierStep(2500), VertexStep(OUT,vertex), NoOpBarrierStep(2500), MatchEndStep(b)], [MatchStartStep(a), WherePredicateStep(null,neq(b)), MatchEndStep(null)], [MatchStartStep
(b), WhereTraversalStep([WhereStartStep(null), VertexStep(BOTH,edge), RangeGlobalStep(0,2), CountGlobalStep, IsStep(gt(1))]), MatchEndStep(null)]]), SelectOneStep(last,b,null), GroupCountStep([Vertex
Step(OUT,edge), CountGlobalStep])]
g.V().hasLabel('person'). //// (1)
and(has('name'), //// (2)
has('name','marko'),
filter(has('age',gt(20)))). //// (3)
match(__.as('a').has('age',lt(32)), //// (4)
__.as('a').repeat(outE().inV()).times(2).as('b')). //// (5)
where('a',neq('b')). //// (6)
where(__.as('b').both().count().is(gt(1))). //// (7)
select('b'). //// (8)
groupCount().
by(out().count()). //// (9)
explain()
-
TinkerGraphStepStrategypulls inhas()-step predicates for global, graph-centric index lookups. -
FilterRankStrategysorts filter steps by their time/space execution costs. -
InlineFilterStrategyde-nests filters to increase the likelihood of filter concatenation and aggregation. -
InlineFilterStrategypulls out named predicates frommatch()-step to more easily allow provider strategies to use indices. -
RepeatUnrollStrategywill unroll loops andIncidentToAdjacentStrategywill turnoutE().inV()-patterns intoout(). -
MatchPredicateStrategywill pull inwhere()-steps so that they can be subjected tomatch()-steps runtime query optimizer. -
CountStrategywill limit the traversal to only the number of traversers required for thecount().is(x)-check. -
PathRetractionStrategywill remove paths from the traversers and increase the likelihood of bulking as path data is not required afterselect('b'). -
AdjacentToIncidentStrategywill turnout()intooutE()to increase data access locality.
A note on Traversal Parameters
Certain gremlin steps are able to accept parameterized arguments in the form of one of more GValue objects. Please see
the parameterizable steps documentation for a complete listing of such steps.
When authoring strategies that interact with parameterizable steps, it’s important to work with StepContract interfaces
rather than concrete step classes. Parameterizable steps can exist as either concrete implementations or as placeholder
steps that hold GValue objects (parameterized arguments). The placeholders are temporary proxies for the concrete
steps which exist during strategy execution, but must be "reduced" to concrete steps prior to traversal execution. Both
concrete and placeholder forms of a step implement the same contract interface, allowing strategies to work uniformly
with either representation.
// Use contract interfaces for parameterizable steps
for (GraphStepContract originalGraphStep : TraversalHelper.getStepsOfAssignableClass(GraphStepContract.class, traversal)) {
// Work with all matching instances of a step through its contract (1)
}
if (step instanceof GraphStepContract) {
GraphStepContract graphStep = (GraphStepContract) step;
// Work with the step through its contract
}
// Instead of checking concrete classes
if (step instanceof GraphStep) {
// This approach has the risk of missing instances of GraphStepPlaceholder
}
-
Note that use of
TraversalHelper.getStepsOfAssignableClass(GraphStepContract.class, traversal))will match all instances of TinkerPop’s reference implementations ofGraphStepContract, ieGraphStepandGraphStepPlaceholder, but will not match and provider specific implementations of the contract such asTinkerGraphStep. Similar rules apply to matching any StepContract via this method.
The contract-based approach ensures strategies work correctly whether the step is in its concrete form or placeholder
form with GValue parameters. Common contract interfaces include:
-
AddVertexStepContract- forAddVertexStepandAddVertexStartStep -
AddEdgeStepContract- forAddEdgeStepandAddEdgeStartStep -
VertexStepContract- forVertexStep -
GraphStepContract- forGraphStep -
MergeStepContract- forMergeVertexStepandMergeEdgeStep
Strategy authors should consult the GValueReductionStrategy to understand how placeholder steps are converted to
concrete steps, and consider whether their strategy should execute before or after this conversion based on whether
they need to work with GValue objects or concrete step implementations. As this is an OptimizationStrategy, any
ProviderOptimizationStrategy are excluded by default from the above considerations regarding parameterizable steps.
Any providers who wish to leverage GValue in a ProviderOptimizationStrategy should first remove
GValueReductionStrategy, and take ownership over ensuring all placeholder steps are reduced to concrete steps
afterward. ProviderGValueReductionStrategy is offered for such purposes.
=== EdgeLabelVerificationStrategy
`EdgeLabelVerificationStrategy` prevents traversals from writing traversals that do not explicitly specify and edge
label when using steps like `out()`, 'in()', 'both()' and their related `E` oriented steps, providing the
option to throw an exception, log a warning or do both when one of these keys is encountered in a mutating step.
++++
<section class="tabs tabs-5">
<input id="tab-1761595663-469" type="radio" name="radio-set-1761595663-469" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-469" class="tab-label-1">java</label>
<input id="tab-1761595663-470" type="radio" name="radio-set-1761595663-469" class="tab-selector-2" />
<label for="tab-1761595663-470" class="tab-label-2">groovy</label>
<input id="tab-1761595663-471" type="radio" name="radio-set-1761595663-469" class="tab-selector-3" />
<label for="tab-1761595663-471" class="tab-label-3">csharp</label>
<input id="tab-1761595663-472" type="radio" name="radio-set-1761595663-469" class="tab-selector-4" />
<label for="tab-1761595663-472" class="tab-label-4">javascript</label>
<input id="tab-1761595663-473" type="radio" name="radio-set-1761595663-469" class="tab-selector-5" />
<label for="tab-1761595663-473" class="tab-label-5">python</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
EdgeLabelVerificationStrategy verificationStrategy = EdgeLabelVerificationStrategy.build() .throwException().create() g.withStrategies(verificationStrategy).V(1).out().iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.withStrategies(new EdgeLabelVerificationStrategy(throwException: true)) .V(1).out().iterate()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,csharp]
g.WithStrategies(new EdgeLabelVerificationStrategy(throwException: true)) .V(1).Out().Iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,javascript]
g.withStrategies(new EdgeLabelVerificationStrategy(throwException: true)) .V(1).out().iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-5">
++++
[source,python]
g.withStrategies(EdgeLabelVerificationStrategy(throwException=true)) .V(1).out().iterate()
++++
</div>
</div>
</section>
++++
=== ElementIdStrategy
`ElementIdStrategy` provides control over element identifiers. Some Graph implementations, such as TinkerGraph,
allow specification of custom identifiers when creating elements:
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-474" type="radio" name="radio-set-1761595663-474" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-474" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-475" type="radio" name="radio-set-1761595663-474" class="tab-selector-2" />
<label for="tab-1761595663-475" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with(TinkerGraph.open()) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> v = g.addV().property(id,'42a').next() =⇒v[42a] gremlin> g.V('42a') =⇒v[42a]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with(TinkerGraph.open()) v = g.addV().property(id,'42a').next() g.V('42a')
++++
</div>
</div>
</section>
++++
Other `Graph` implementations, such as Neo4j, generate element identifiers automatically and cannot be assigned.
As a helper, `ElementIdStrategy` can be used to make identifier assignment possible by using vertex and edge indices
under the hood.
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-476" type="radio" name="radio-set-1761595663-476" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-476" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-477" type="radio" name="radio-set-1761595663-476" class="tab-selector-2" />
<label for="tab-1761595663-477" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> strategy = ElementIdStrategy.build().create() =⇒ElementIdStrategy gremlin> g = traversal().with(graph).withStrategies(strategy) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard] gremlin> g.addV().property(id, '42a').id() =⇒42a
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = Neo4jGraph.open('/tmp/neo4j') strategy = ElementIdStrategy.build().create() g = traversal().with(graph).withStrategies(strategy) g.addV().property(id, '42a').id()
++++
</div>
</div>
</section>
++++
IMPORTANT: The key that is used to store the assigned identifier should be indexed in the underlying graph
database. If it is not indexed, then lookups for the elements that use these identifiers will perform a linear scan.
=== EventStrategy
The purpose of the `EventStrategy` is to raise events to one or more `MutationListener` objects as changes to the
underlying `Graph` occur within a `Traversal`. Such a strategy is useful for logging changes, triggering certain
actions based on change, or any application that needs notification of some mutating operation during a `Traversal`.
If the transaction is rolled back, the event queue is reset.
The following events are raised to the `MutationListener`:
* New vertex
* New edge
* Vertex property changed
* Edge property changed
* Vertex property removed
* Edge property removed
* Vertex removed
* Edge removed
To start processing events from a `Traversal` first implement the `MutationListener` interface. An example of this
implementation is the `ConsoleMutationListener` which writes output to the console for each event. The following
console session displays the basic usage:
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-478" type="radio" name="radio-set-1761595663-478" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-478" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-479" type="radio" name="radio-set-1761595663-478" class="tab-selector-2" />
<label for="tab-1761595663-479" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> import org.apache.tinkerpop.gremlin.process.traversal.step.util.event.* =⇒org.apache.tinkerpop.gremlin.process.traversal.step.util.event.* gremlin> graph = TinkerFactory.createModern() =⇒tinkergraph[vertices:6 edges:6] gremlin> l = new ConsoleMutationListener(graph) =⇒MutationListener[tinkergraph[vertices:6 edges:6]] gremlin> strategy = EventStrategy.build().addListener(l).create() =⇒EventStrategy gremlin> g = traversal().with(graph).withStrategies(strategy) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> g.addV().property('name','stephen') Vertex [v[0]] added to graph [tinkergraph[vertices:7 edges:6]] =⇒v[0] gremlin> g.V().has('name','stephen'). property(list, 'location', 'centreville', 'startTime', 1990, 'endTime', 2000). property(list, 'location', 'dulles', 'startTime', 2000, 'endTime', 2006). property(list, 'location', 'purcellville', 'startTime', 2006) Vertex [v[0]] property [vp[empty]] change to [centreville] in graph [tinkergraph[vertices:7 edges:6]] Vertex [v[0]] property [vp[empty]] change to [dulles] in graph [tinkergraph[vertices:7 edges:6]] Vertex [v[0]] property [vp[empty]] change to [purcellville] in graph [tinkergraph[vertices:7 edges:6]] =⇒v[0] gremlin> g.V().has('name','stephen'). property(set, 'location', 'purcellville', 'startTime', 2006, 'endTime', 2019) Vertex [v[0]] property [vp[location→purcellville]] change to [purcellville] in graph [tinkergraph[vertices:7 edges:6]] =⇒v[0] gremlin> g.E().drop() Edge [e[7][1-knows→2]] removed from graph [tinkergraph[vertices:7 edges:6]] Edge [e[8][1-knows→4]] removed from graph [tinkergraph[vertices:7 edges:5]] Edge [e[9][1-created→3]] removed from graph [tinkergraph[vertices:7 edges:4]] Edge [e[10][4-created→5]] removed from graph [tinkergraph[vertices:7 edges:3]] Edge [e[11][4-created→3]] removed from graph [tinkergraph[vertices:7 edges:2]] Edge [e[12][6-created→3]] removed from graph [tinkergraph[vertices:7 edges:1]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
import org.apache.tinkerpop.gremlin.process.traversal.step.util.event.* graph = TinkerFactory.createModern() l = new ConsoleMutationListener(graph) strategy = EventStrategy.build().addListener(l).create() g = traversal().with(graph).withStrategies(strategy) g.addV().property('name','stephen') g.V().has('name','stephen'). property(list, 'location', 'centreville', 'startTime', 1990, 'endTime', 2000). property(list, 'location', 'dulles', 'startTime', 2000, 'endTime', 2006). property(list, 'location', 'purcellville', 'startTime', 2006) g.V().has('name','stephen'). property(set, 'location', 'purcellville', 'startTime', 2006, 'endTime', 2019) g.E().drop()
++++
</div>
</div>
</section>
++++
By default, the `EventStrategy` is configured with an `EventQueue` that raises events as they occur within execution
of a `Step`. As such, the final line of Gremlin execution that drops all edges shows a bit of an inconsistent count,
where the removed edge count is accounted for after the event is raised. The strategy can also be configured with a
`TransactionalEventQueue` that captures the changes within a transaction and does not allow them to fire until the
transaction is committed.
WARNING: `EventStrategy` is not meant for usage in tracking global mutations across separate processes. In other
words, a mutation in one JVM process is not raised as an event in a different JVM process. In addition, events are
not raised when mutations occur outside of the `Traversal` context.
Another default configuration for `EventStrategy` revolves around the concept of "detachment". Graph elements are
detached from the graph as copies when passed to referring mutation events. Therefore, when adding a new `Vertex` in
TinkerGraph, the event will not contain a `TinkerVertex` but will instead include a `DetachedVertex`. This behavior
can be modified with the `detach()` method on the `EventStrategy.Builder` which accepts the following inputs: `null`
meaning no detachment and the return of the original element, `DetachedFactory` which is the same as the default
behavior, and `ReferenceFactory` which will return "reference" elements only with no properties.
IMPORTANT: If setting the `detach()` configuration to `null`, be aware that transactional graphs will likely create a
new transaction immediately following the `commit()` that raises the events. The graph elements raised in the events
may also not behave as "snapshots" at the time of their creation as they are "live" references to actual database
elements.
=== GValueReductionStrategy
`GValueReductionStrategy` converts placeholder steps that hold `GValue` objects to their concrete implementations.
While not an optimization in and of itself, the `GValue` functionality provides a mechanism for traversal optimization
and parameterization, so this strategy falls in the optimization category. Converting to concrete steps at this stage
also allows provider optimization strategies to execute on concrete steps rather than step interfaces, which are much
easier to reason about for the vast majority of providers.
This strategy is automatically applied and typically does not need to be explicitly configured by users. However,
providers hoping to do more advanced optimizations that require `GValue` objects to be present for their strategies
will need to remove `GValueReductionStrategy` and offer their own mechanism for converting step placeholders to
concrete steps. `ProviderGValueReductionStrategy` is a base class available to help with this need.
The strategy operates by calling the `reduce()` method on any step that implements `GValueHolder`:
[source,java]
@Override public void apply(final Traversal.Admin<?, ?> traversal) { final List<Step> steps = traversal.getSteps(); for (int i = 0; i < steps.size(); i++) { if (steps.get(i) instanceof GValueHolder) { GValueHolder) steps.get(i.reduce(); } } }
[[partitionstrategy]]
=== PartitionStrategy
image::partition-graph.png[width=325]
`PartitionStrategy` partitions the vertices and edges of a graph into `String` named partitions (i.e. buckets,
subgraphs, etc.). The idea behind `PartitionStrategy` is presented in the image above where each element is in a
single partition (represented by its color). Partitions can be read from, written to, and linked/joined by edges
that span one or two partitions (e.g. a tail vertex in one partition and a head vertex in another).
There are three primary configurations in `PartitionStrategy`:
. Partition Key - The property key that denotes a String value representing a partition.
. Write Partition - A `String` denoting what partition all future written elements will be in.
. Read Partitions - A `Set<String>` of partitions that can be read from.
The best way to understand `PartitionStrategy` is via example.
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-480" type="radio" name="radio-set-1761595663-480" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-480" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-481" type="radio" name="radio-set-1761595663-480" class="tab-selector-2" />
<label for="tab-1761595663-481" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerFactory.createModern() =⇒tinkergraph[vertices:6 edges:6] gremlin> strategyA = new PartitionStrategy(partitionKey: "_partition", writePartition: "a", readPartitions: ["a"]) =⇒PartitionStrategy gremlin> strategyB = new PartitionStrategy(partitionKey: "_partition", writePartition: "b", readPartitions: ["b"]) =⇒PartitionStrategy gremlin> gA = traversal().with(graph).withStrategies(strategyA) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> gA.addV() // this vertex has a property of {_partition:"a"} =⇒v[0] gremlin> gB = traversal().with(graph).withStrategies(strategyB) =⇒graphtraversalsource[tinkergraph[vertices:7 edges:6], standard] gremlin> gB.addV() // this vertex has a property of {_partition:"b"} =⇒v[13] gremlin> gA.V() =⇒v[0] gremlin> gB.V() =⇒v[13]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerFactory.createModern() strategyA = new PartitionStrategy(partitionKey: "_partition", writePartition: "a", readPartitions: ["a"]) strategyB = new PartitionStrategy(partitionKey: "_partition", writePartition: "b", readPartitions: ["b"]) gA = traversal().with(graph).withStrategies(strategyA) gA.addV() // this vertex has a property of {_partition:"a"} gB = traversal().with(graph).withStrategies(strategyB) gB.addV() // this vertex has a property of {_partition:"b"} gA.V() gB.V()
++++
</div>
</div>
</section>
++++
The following examples demonstrate the above `PartitionStrategy` definition for "strategyA" in other programming
languages:
++++
<section class="tabs tabs-4">
<input id="tab-1761595663-482" type="radio" name="radio-set-1761595663-482" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-482" class="tab-label-1">java</label>
<input id="tab-1761595663-483" type="radio" name="radio-set-1761595663-482" class="tab-selector-2" />
<label for="tab-1761595663-483" class="tab-label-2">csharp</label>
<input id="tab-1761595663-484" type="radio" name="radio-set-1761595663-482" class="tab-selector-3" />
<label for="tab-1761595663-484" class="tab-label-3">javascript</label>
<input id="tab-1761595663-485" type="radio" name="radio-set-1761595663-482" class="tab-selector-4" />
<label for="tab-1761595663-485" class="tab-label-4">python</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
PartitionStrategy strategyA = PartitionStrategy.build().partitionKey("_partition") .writePartition("a") .readPartitions("a").create();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,csharp]
PartitionStrategy strategyA = new PartitionStrategy( partitionKey: "_partition", writePartition: "a", readPartitions: new List<string>(){"a"});
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,javascript]
const strategyA = new PartitionStrategy(partitionKey: "_partition", writePartition: "a", readPartitions: ["a"])
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,python]
strategyA = PartitionStrategy(partitionKey="_partition", writePartition="a", readPartitions=["a"])
++++
</div>
</div>
</section>
++++
Partitions may also extend to `VertexProperty` elements if the `Graph` can support meta-properties and if the
`includeMetaProperties` value is set to `true` when the `PartitionStrategy` is built. The `partitionKey` will be
stored in the meta-properties of the `VertexProperty` and blind the traversal to those properties. Please note that
the `VertexProperty` will only be hidden by way of the `Traversal` itself. For example, calling `Vertex.property(k)`
bypasses the context of the `PartitionStrategy` and will thus allow all properties to be accessed.
By writing elements to particular partitions and then restricting read partitions, the developer is able to create
multiple graphs within a single address space. Moreover, by supporting references between partitions, it is possible
to merge those multiple graphs (i.e. join partitions).
[[readonlystrategy]]
=== ReadOnlyStrategy
`ReadOnlyStrategy` is largely self-explanatory. A `Traversal` that has this strategy applied will throw an
`IllegalStateException` if the `Traversal` has any mutating steps within it.
++++
<section class="tabs tabs-5">
<input id="tab-1761595663-486" type="radio" name="radio-set-1761595663-486" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-486" class="tab-label-1">java</label>
<input id="tab-1761595663-487" type="radio" name="radio-set-1761595663-486" class="tab-selector-2" />
<label for="tab-1761595663-487" class="tab-label-2">groovy</label>
<input id="tab-1761595663-488" type="radio" name="radio-set-1761595663-486" class="tab-selector-3" />
<label for="tab-1761595663-488" class="tab-label-3">csharp</label>
<input id="tab-1761595663-489" type="radio" name="radio-set-1761595663-486" class="tab-selector-4" />
<label for="tab-1761595663-489" class="tab-label-4">javascript</label>
<input id="tab-1761595663-490" type="radio" name="radio-set-1761595663-486" class="tab-selector-5" />
<label for="tab-1761595663-490" class="tab-label-5">python</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
ReadOnlyStrategy verificationStrategy = ReadOnlyStrategy.instance(); g.withStrategies(verificationStrategy).addV('person').iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.withStrategies(ReadOnlyStrategy).addV('person').iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,csharp]
g.WithStrategies(new ReadOnlyStrategy()).addV("person").Iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,javascript]
g.withStrategies(new ReadOnlyStrategy()).addV("person").iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-5">
++++
[source,python]
g.withStrategies(ReadOnlyStrategy).addV("person").iterate()
++++
</div>
</div>
</section>
++++
=== ReservedKeysVerificationStrategy
`ReservedKeysVerificationStrategy` prevents traversals from adding property keys that are protected, providing the
option to throw an exception, log a warning or do both when one of these keys is encountered in a mutating step. By
default "id" and "label" are considered "reserved" but the default can be changed by building with the
`reservedKeys()` options and supply a `Set` of keys to trigger the `VerificationException`.
++++
<section class="tabs tabs-5">
<input id="tab-1761595663-491" type="radio" name="radio-set-1761595663-491" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-491" class="tab-label-1">java</label>
<input id="tab-1761595663-492" type="radio" name="radio-set-1761595663-491" class="tab-selector-2" />
<label for="tab-1761595663-492" class="tab-label-2">groovy</label>
<input id="tab-1761595663-493" type="radio" name="radio-set-1761595663-491" class="tab-selector-3" />
<label for="tab-1761595663-493" class="tab-label-3">csharp</label>
<input id="tab-1761595663-494" type="radio" name="radio-set-1761595663-491" class="tab-selector-4" />
<label for="tab-1761595663-494" class="tab-label-4">javascript</label>
<input id="tab-1761595663-495" type="radio" name="radio-set-1761595663-491" class="tab-selector-5" />
<label for="tab-1761595663-495" class="tab-label-5">python</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
ReservedKeysVerificationStrategy verificationStrategy = ReservedKeysVerificationStrategy.build() .throwException().create() g.withStrategies(verificationStrategy).addV('person').property("id",123).iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.withStrategies(new ReservedKeysVerificationStrategy(throwException: true)) .addV('person').property("id",123).iterate()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,csharp]
g.WithStrategies(new ReservedKeysVerificationStrategy(throwException: true)) .AddV('person').Property("id",123).Iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,javascript]
g.withStrategies(new ReservedKeysVerificationStrategy(throwException: true)) .addV('person').property("id",123).iterate();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-5">
++++
[source,python]
g.withStrategies(ReservedKeysVerificationStrategy(throwException=true)) .addV('person').property("id",123).iterate()
++++
</div>
</div>
</section>
++++
=== SeedStrategy
There are number of components of the Gremlin language that, by design, can produce non-deterministic results:
* <<coin-step,coin()>>
* <<order-step,order()>> when `Order.shuffle` is used
* <<sample-step,sample()>>
To get these steps to return deterministic results, `SeedStrategy` allows assignment of a seed value to the `Random`
operations of the steps. The following example demonstrates the random nature of `shuffle`:
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-496" type="radio" name="radio-set-1761595663-496" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-496" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-497" type="radio" name="radio-set-1761595663-496" class="tab-selector-2" />
<label for="tab-1761595663-497" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.V().values('name').fold().order(local).by(shuffle) =⇒[peter,marko,josh,ripple,lop,vadas] gremlin> g.V().values('name').fold().order(local).by(shuffle) =⇒[vadas,josh,marko,ripple,peter,lop] gremlin> g.V().values('name').fold().order(local).by(shuffle) =⇒[peter,vadas,ripple,josh,lop,marko] gremlin> g.V().values('name').fold().order(local).by(shuffle) =⇒[ripple,marko,vadas,peter,lop,josh] gremlin> g.V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,lop,vadas,marko,ripple]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V().values('name').fold().order(local).by(shuffle) g.V().values('name').fold().order(local).by(shuffle) g.V().values('name').fold().order(local).by(shuffle) g.V().values('name').fold().order(local).by(shuffle) g.V().values('name').fold().order(local).by(shuffle)
++++
</div>
</div>
</section>
++++
With `SeedStrategy` in place, however, the same order is applied each time:
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-498" type="radio" name="radio-set-1761595663-498" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-498" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-499" type="radio" name="radio-set-1761595663-498" class="tab-selector-2" />
<label for="tab-1761595663-499" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> seedStrategy = SeedStrategy.build().seed(999998L).create() =⇒SeedStrategy gremlin> g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,marko,lop,ripple,vadas] gremlin> g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,marko,lop,ripple,vadas] gremlin> g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,marko,lop,ripple,vadas] gremlin> g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,marko,lop,ripple,vadas] gremlin> g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) =⇒[peter,josh,marko,lop,ripple,vadas]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
seedStrategy = SeedStrategy.build().seed(999998L).create() g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle) g.withStrategies(seedStrategy).V().values('name').fold().order(local).by(shuffle)
++++
</div>
</div>
</section>
++++
IMPORTANT: `SeedStrategy` only makes specific steps behave in a deterministic fashion and does not necessarily make
the entire traversal deterministic itself. If the underlying graph database or processing engine happens to not
guarantee iteration order, then it is possible that the final result of the traversal will appear to be
non-deterministic. In these cases, it would be necessary to enforce a deterministic iteration with `order()` prior to
these steps that make use of randomness to return results.
[[subraphstrategy]]
=== SubgraphStrategy
`SubgraphStrategy` is similar to `PartitionStrategy` in that it constrains a `Traversal` to certain vertices, edges,
and vertex properties as determined by a `Traversal`-based criterion defined individually for each.
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-500" type="radio" name="radio-set-1761595663-500" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-500" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-501" type="radio" name="radio-set-1761595663-500" class="tab-selector-2" />
<label for="tab-1761595663-501" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerFactory.createTheCrew() =⇒tinkergraph[vertices:6 edges:14] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:14], standard] gremlin> g.V().as('a').values('location').as('b'). //// <1> select('a','b').by('name').by() =⇒[a:marko,b:san diego] =⇒[a:marko,b:santa cruz] =⇒[a:marko,b:brussels] =⇒[a:marko,b:santa fe] =⇒[a:stephen,b:centreville] =⇒[a:stephen,b:dulles] =⇒[a:stephen,b:purcellville] =⇒[a:matthias,b:bremen] =⇒[a:matthias,b:baltimore] =⇒[a:matthias,b:oakland] =⇒[a:matthias,b:seattle] =⇒[a:daniel,b:spremberg] =⇒[a:daniel,b:kaiserslautern] =⇒[a:daniel,b:aachen] gremlin> g = g.withStrategies(new SubgraphStrategy(vertexProperties: hasNot('endTime'))) //// <2> =⇒graphtraversalsource[tinkergraph[vertices:6 edges:14], standard] gremlin> g.V().as('a').values('location').as('b'). //// <3> select('a','b').by('name').by() =⇒[a:marko,b:santa fe] =⇒[a:stephen,b:purcellville] =⇒[a:matthias,b:seattle] =⇒[a:daniel,b:aachen] gremlin> g.V().as('a').values('location').as('b'). select('a','b').by('name').by().explain() =⇒Traversal Explanation
Original Traversal [GraphStep(vertex,[])@[a], PropertiesStep([location],value)@[b], SelectStep(last,[a, b],[value(name), identity])]
SubgraphStrategy [D] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] ConnectiveStrategy [D] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] IdentityRemovalStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] MatchPredicateStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] FilterRankingStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] CountStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] EarlyLimitStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), TraversalFilterStep([NotStep([PropertiesStep([endTime],value)])]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity ])] InlineFilterStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],value)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] IncidentToAdjacentStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],value)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] AdjacentToIncidentStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] ByModulatorOptimizationStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] RepeatUnrollStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] PathRetractionStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] LazyBarrierStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] GValueReductionStrategy [O] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] TinkerGraphCountStrategy [P] [GraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] TinkerGraphStepStrategy [P] [TinkerGraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] ProfileStrategy [F] [TinkerGraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])] StandardVerificationStrategy [V] [TinkerGraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])]
Final Traversal [TinkerGraphStep(vertex,[])@[a], PropertiesStep([location],property), NotStep([PropertiesStep([endTime],property)]), PropertyValueStep@[b], SelectStep(last,[a, b],[value(name), identity])]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerFactory.createTheCrew() g = traversal().with(graph) g.V().as('a').values('location').as('b'). //// <1> select('a','b').by('name').by() g = g.withStrategies(new SubgraphStrategy(vertexProperties: hasNot('endTime'))) //// <2> g.V().as('a').values('location').as('b'). //// <3> select('a','b').by('name').by() g.V().as('a').values('location').as('b'). select('a','b').by('name').by().explain()
++++
</div>
</div>
</section>
++++
<1> Get all vertices and their vertex property locations.
<2> Create a `SubgraphStrategy` where vertex properties must not have an `endTime`-property (thus, the current location).
<3> Get all vertices and their current vertex property locations.
The following examples demonstrate the above `SubgraphStrategy` definition in other programming languages:
++++
<section class="tabs tabs-4">
<input id="tab-1761595663-502" type="radio" name="radio-set-1761595663-502" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-502" class="tab-label-1">java</label>
<input id="tab-1761595663-503" type="radio" name="radio-set-1761595663-502" class="tab-selector-2" />
<label for="tab-1761595663-503" class="tab-label-2">csharp</label>
<input id="tab-1761595663-504" type="radio" name="radio-set-1761595663-502" class="tab-selector-3" />
<label for="tab-1761595663-504" class="tab-label-3">javascript</label>
<input id="tab-1761595663-505" type="radio" name="radio-set-1761595663-502" class="tab-selector-4" />
<label for="tab-1761595663-505" class="tab-label-4">python</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
g.withStrategies(SubgraphStrategy.build().vertexProperties(hasNot("endTime")).create());
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,csharp]
g.WithStrategies(new SubgraphStrategy(vertexProperties: HasNot("endTime")));
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,javascript]
g.withStrategies(new SubgraphStrategy(vertexProperties: hasNot("endTime")));
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,python]
g.withStrategies(new SubgraphStrategy(vertexProperties=hasNot("endTime")))
++++
</div>
</div>
</section>
++++
IMPORTANT: This strategy is implemented such that the vertices attached to an `Edge` must both satisfy the vertex
criterion (if present) in order for the `Edge` to be considered a part of the subgraph.
The example below uses all three filters: vertex, edge, and vertex property. People vertices must have lived in more
than three places, edges must be labeled "develops," and vertex properties must be the persons current location or a
non-location property.
++++
<section class="tabs tabs-2">
<input id="tab-1761595663-506" type="radio" name="radio-set-1761595663-506" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-506" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595663-507" type="radio" name="radio-set-1761595663-506" class="tab-selector-2" />
<label for="tab-1761595663-507" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerFactory.createTheCrew() =⇒tinkergraph[vertices:6 edges:14] gremlin> g = traversal().with(graph).withStrategies(SubgraphStrategy.build(). vertices(or(hasNot('location'),properties('location').count().is(gt(3)))). edges(hasLabel('develops')). vertexProperties(or(hasLabel(neq('location')),hasNot('endTime'))).create()) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:14], standard] gremlin> g.V().elementMap() =⇒[id:1,label:person,name:marko,location:santa fe] =⇒[id:8,label:person,name:matthias,location:seattle] =⇒[id:10,label:software,name:gremlin] =⇒[id:11,label:software,name:tinkergraph] gremlin> g.E().elementMap() =⇒[id:13,label:develops,IN:[id:10,label:software],OUT:[id:1,label:person],since:2009] =⇒[id:14,label:develops,IN:[id:11,label:software],OUT:[id:1,label:person],since:2010] =⇒[id:21,label:develops,IN:[id:10,label:software],OUT:[id:8,label:person],since:2012] gremlin> g.V().outE().inV(). path(). by('name'). by(). by('name') =⇒[marko,e[13][1-develops→10],gremlin] =⇒[marko,e[14][1-develops→11],tinkergraph] =⇒[matthias,e[21][8-develops→10],gremlin]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerFactory.createTheCrew() g = traversal().with(graph).withStrategies(SubgraphStrategy.build(). vertices(or(hasNot('location'),properties('location').count().is(gt(3)))). edges(hasLabel('develops')). vertexProperties(or(hasLabel(neq('location')),hasNot('endTime'))).create()) g.V().elementMap() g.E().elementMap() g.V().outE().inV(). path(). by('name'). by(). by('name')
++++
</div>
</div>
</section>
++++
=== VertexProgramDenyStrategy
Like the `ReadOnlyStrategy`, the `VertexProgramDenyStrategy` denies the execution of specific traversals. A `Traversal`
that has the `VertexProgramDenyStrategy` applied will throw an `IllegalStateException` if it uses the
`withComputer()` step. This `TraversalStrategy` can be useful for configuring `GraphTraversalSource` instances in
Gremlin Server with the `ScriptFileGremlinPlugin`.
[source,text]
gremlin> oltpOnly = g.withStrategies(VertexProgramDenyStrategy.instance()) =⇒graphtraversalsource[tinkergraph[vertices:5 edges:7], standard] gremlin> oltpOnly.withComputer().V().elementMap() The TraversalSource does not allow the use of a GraphComputer Type ':help' or ':h' for help. Display stack trace? [yN]
[[dsl]] == Domain Specific Languages Gremlin is a link:http://en.wikipedia.org/wiki/Domain-specific_language[domain specific language] (DSL) for traversing graphs. It operates in the language of vertices, edges and properties. Typically, applications built with Gremlin are not of the graph domain, but instead model their domain within a graph. For example, the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/images/tinkerpop-modern.png["modern" toy graph] models software and person domain objects with the relationships between them (i.e. a person "knows" another person and a person "created" software). An analyst who wanted to find out if "marko" knows "josh" could write the following Gremlin: [source,java]
g.V().hasLabel('person').has('name','marko'). out('knows').hasLabel('person').has('name','josh').hasNext()
While this method achieves the desired answer, it requires the analyst to traverse the graph in the domain language of the graph rather than the domain language of the social network. A more natural way for the analyst to write this traversal might be: [source,java]
g.persons('marko').knows('josh').hasNext()
In the statement above, the traversal is written in the language of the domain, abstracting away the underlying graph structure from the query. The two traversal results are equivalent and, indeed, the "Social DSL" produces the same set of traversal steps as the "Graph DSL" thus producing equivalent strategy application and performance runtimes. To further the example of the Social DSL consider the following: [source,java]
g.V().hasLabel('person'). where(outE("created").count().is(P.gte(2))).count()
social.persons().where(createdAtLeast(2)).count()
g.V().hasLabel('person').has('name','marko'). out("knows").hasLabel("person").values("age").min()
social.persons("marko").youngestFriendsAge()
Learn more about how to implement these DSLs in the <<gremlin-drivers-variants,Gremlin Language Variants>> section
specific to the programming language of interest.
[[translators]]
== Translators
image::gremlin-translator.png[width=1024]
There are times when is helpful to translate Gremlin from one programming language to another. Perhaps a large Gremlin
example is found on StackOverflow written in Java, but the programming language the developer has chosen is Python.
Fortunately, TinkerPop has developed `Translator` infrastructure that will convert Gremlin from one programming
language syntax to another.
The functionality relevant to most users is actually a sub-function of `Translator` infrastructure and is more
specifically a `ScriptTranslator` which takes Gremlin `Bytecode` of a traversal and generates a `String` representation
of that `Bytecode` in the programming language syntax that the `ScriptTranslator` instance supports. The translation
therefore allows Gremlin to be converted from the host programming language of the `Translator` to another.
The following translators are available, where the first column identifies the host programming language and the
columns represent the language that Gremlin can be generated in:
[width="100%",cols="<,^,^,^,^,^,^",options="header"]
|=========================================================
| |Java |Groovy |Javascript |.NET |Python |Go
|*Java* |- |X |X |X |X |X
|*Groovy* | |X |X | |X |
|*Javascript* | |X |- | | |
|*.NET* | |X | |- | |
|*Python* | |X | | |- |
|*Go* | |X | | | |-
|=========================================================
Each programming language has its own API for translation, but the pattern is quite similar from one to the next:
WARNING: While `Translator` implementations have been around for some time, they are still in their early stages from
an interface perspective. API changes may occur in the near future.
++++
<section class="tabs tabs-5">
<input id="tab-1761595663-508" type="radio" name="radio-set-1761595663-508" class="tab-selector-1" checked="checked" />
<label for="tab-1761595663-508" class="tab-label-1">java</label>
<input id="tab-1761595663-509" type="radio" name="radio-set-1761595663-508" class="tab-selector-2" />
<label for="tab-1761595663-509" class="tab-label-2">javascript</label>
<input id="tab-1761595663-510" type="radio" name="radio-set-1761595663-508" class="tab-selector-3" />
<label for="tab-1761595663-510" class="tab-label-3">python</label>
<input id="tab-1761595663-511" type="radio" name="radio-set-1761595663-508" class="tab-selector-4" />
<label for="tab-1761595663-511" class="tab-label-4">csharp</label>
<input id="tab-1761595663-512" type="radio" name="radio-set-1761595663-508" class="tab-selector-5" />
<label for="tab-1761595663-512" class="tab-label-5">go</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
import org.apache.tinkerpop.gremlin.process.traversal.translator.*;
GraphTraversalSource g = …; Traversal<Vertex,Integer> t = g.V().has("person","name","marko"). where(in("knows")). values("age"). map(Lambda.function("it.get() + 1"));
Translator.ScriptTranslator groovyTranslator = GroovyTranslator.of("g"); System.out.println(groovyTranslator.translate(t).getScript());
Translator.ScriptTranslator dotnetTranslator = DotNetTranslator.of("g"); System.out.println(dotnetTranslator.translate(t).getScript());
Translator.ScriptTranslator pythonTranslator = PythonTranslator.of("g"); System.out.println(pythonTranslator.translate(t).getScript());
Translator.ScriptTranslator javascriptTranslator = JavascriptTranslator.of("g"); System.out.println(javascriptTranslator.translate(t).getScript());
Translator.ScriptTranslator golangTranslator = GolangTranslator.of("g"); System.out.println(golangTranslator.translate(t).getScript());
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,javascript]
const g = …; const t = g.V().has("person","name","marko"). where(in_("knows")). values("age");
const translator = new gremlin.process.Translator('g'); console.log(translator.translate(t));
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,python]
from gremlin_python.process.translator import *
g = … t = (g.V().has('person','name','marko'). where(_.in("knows")). values("age"))
# Groovy translator = Translator().of('g'); print(translator.translate(t.bytecode)); # OUTPUT: g.V().has('person','name','marko').where(__.in('knows')).values('age')
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,csharp]
var g = …; var t = g.V().Has("person", "name", "marko").Where(In("knows")).Values<int>("age");
var translator = GroovyTranslator.Of("g"); Console.WriteLine(translator.Translate(t));
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-5">
++++
[source,go]
g := … t := g.V().Has("person", "name", "marko"). Where(T__.In("knows")). Values("age")
translator := NewTranslator("g") print(translator.Translate(t.Bytecode))
++++
</div>
</div>
</section>
++++
The JVM-based translator has the added option of parameter extraction, where the translation process will attempt to
identify opportunities to generate an output that would replace constant values with parameters. The parameters would
then be extracted and returned as part of the `Script` object:
[source,java]
Traversal<Vertex,Integer> t = g.V().has("person","name","marko"). where(__.in("knows")). values("age"); Translator.ScriptTranslator translator = GroovyTranslator.of("g", true); Script s = translator.translate(t); System.out.println(s.getScript()); System.out.println(s.parameters);
The `GroovyTranslator` can take a `TypeTranslator` argument which allows some customization of how types get converted to script form. The `DefaultTypeTranslator` is used if a specific implementation is not specified. A built-in alternative to this implementation is the `LanguageTypeTranslator` which will prefer use of the Gremlin language `datetime()` function rather than the JVM specific `Date` and `Timestamp` conversions. This translator can be helpful when generating scripts that will be sent to Gremlin Server or Remote Graph Providers supporting the `datetime()` form. The `PythonTranslator` can take a `TypeTranslator` argument to disable the syntactic sugar which the default translator applies to converted queries. The `DefaultTypeTranslator` is used if a specific implementation is not specified. [source,java]
Traversal<Vertex,String> t = g.V().range(0, 10).has("person","name","marko"). limit(2). values("name"); Translator.ScriptTranslator translator = PythonTranslator.of("g"); String defaultQueryTranslation = translator.translate(t) System.out.println(defaultQueryTranslation);
Translator.ScriptTranslator noSugarTranslator = PythonTranslator.of("g", new PythonTranslator.NoSugarTranslator(false)); String noSugarTranslation = noSugarTranslator.translate(t) System.out.println(noSugarTranslation);
Translator.ScriptTranslator noSugarTranslatorWithParameters = PythonTranslator.of("g", new PythonTranslator.NoSugarTranslator(true)); String noSugarTranslationWithParameters = noSugarTranslatorWithParameters.translate(t) System.out.println(noSugarTranslationWithParameters);
// LAST LINE
////
////
[[graphcomputer]]
= The GraphComputer
image:graphcomputer-puffers.png[width=350,float=right] TinkerPop provides two primary means of interacting with a
graph: link:http://en.wikipedia.org/wiki/Online_transaction_processing[online transaction processing] (OLTP) and
link:http://en.wikipedia.org/wiki/Online_analytical_processing[online analytical processing] (OLAP). OLTP-based
graph systems allow the user to query the graph in real-time. However, typically, real-time performance is only
possible when a local traversal is enacted. A local traversal is one that starts at a particular vertex (or small set
of vertices) and touches a small set of connected vertices (by any arbitrary path of arbitrary length). In short, OLTP
queries interact with a limited set of data and respond on the order of milliseconds or seconds. On the other hand,
with OLAP graph processing, the entire graph is processed and thus, every vertex and edge is analyzed (some times
more than once for iterative, recursive algorithms). Due to the amount of data being processed, the results are
typically not returned in real-time and for massive graphs (i.e. graphs represented across a cluster of machines),
results can take on the order of minutes or hours.
* *OLTP*: real-time, limited data accessed, random data access, sequential processing, querying
* *OLAP*: long running, entire data set accessed, sequential data access, parallel processing, batch processing
image::oltp-vs-olap.png[width=600]
The image above demonstrates the difference between Gremlin OLTP and Gremlin OLAP. With Gremlin OLTP, the graph is
walked by moving from vertex-to-vertex via incident edges. With Gremlin OLAP, all vertices are provided a
`VertexProgram`. The programs send messages to one another with the topological structure of the graph acting as the
communication network (though random message passing possible). In many respects, the messages passed are like
the OLTP traversers moving from vertex-to-vertex. However, all messages are moving independent of one another, in
parallel. Once a vertex program is finished computing, TinkerPop's OLAP engine supports any number
link:http://en.wikipedia.org/wiki/MapReduce[`MapReduce`] jobs over the resultant graph.
IMPORTANT: `GraphComputer` was designed from the start to be used within a multi-JVM, distributed environment --
in other words, a multi-machine compute cluster. As such, all the computing objects must be able to be migrated
between JVMs. The pattern promoted is to store state information in a `Configuration` object to later be regenerated
by a loading process. It is important to realize that `VertexProgram`, `MapReduce`, and numerous particular instances
rely heavily on the state of the computing classes (not the structure, but the processes) to be stored in a
`Configuration`.
[[vertexprogram]]
== VertexProgram
image:bsp-diagram.png[width=400,float=right] GraphComputer takes a `VertexProgram`. A VertexProgram can be thought of
as a piece of code that is executed at each vertex in logically parallel manner until some termination condition is
met (e.g. a number of iterations have occurred, no more data is changing in the graph, etc.). A submitted
`VertexProgram` is copied to all the workers in the graph. A worker is not an explicit concept in the API, but is
assumed of all `GraphComputer` implementations. At minimum each vertex is a worker (though this would be inefficient
due to the fact that each vertex would maintain a VertexProgram). In practice, the workers partition the vertex set
and are responsible for the execution of the VertexProgram over all the vertices within their sphere of influence.
The workers orchestrate the execution of the `VertexProgram.execute()` method on all their vertices in an
link:http://en.wikipedia.org/wiki/Bulk_synchronous_parallel[bulk synchronous parallel] (BSP) fashion. The vertices
are able to communicate with one another via messages. There are two kinds of messages in Gremlin OLAP:
`MessageScope.Local` and `MessageScope.Global`. A local message is a message to an adjacent vertex. A global
message is a message to any arbitrary vertex in the graph. Once the VertexProgram has completed its execution,
any number of `MapReduce` jobs are evaluated. MapReduce jobs are provided by the user via `GraphComputer.mapReduce()`
or by the `VertexProgram` via `VertexProgram.getMapReducers()`.
image::graphcomputer.png[width=500]
The example below demonstrates how to submit a VertexProgram to a graph's GraphComputer. `GraphComputer.submit()`
yields a `Future<ComputerResult>`. The `ComputerResult` has the resultant computed graph which can be a full copy
of the original graph (see <<hadoop-gremlin,Hadoop-Gremlin>>) or a view over the original graph (see
<<tinkergraph-gremlin,TinkerGraph>>). The ComputerResult also provides access to computational side-effects called `Memory`
(which includes, for example, runtime, number of iterations, results of MapReduce jobs, and VertexProgram-specific
memory manipulations).
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-1" type="radio" name="radio-set-1761594595-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-2" type="radio" name="radio-set-1761594595-1" class="tab-selector-2" />
<label for="tab-1761594595-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> result = graph.compute().program(PageRankVertexProgram.build().create()).submit().get() =⇒result[tinkergraph[vertices:6 edges:0],memory[size:0]] gremlin> result.memory().runtime =⇒27 gremlin> g = traversal().with(result.graph()) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:0], standard] gremlin> g.V().elementMap() =⇒[id:1,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865538,name:marko,age:29] =⇒[id:2,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719103,name:vadas,age:27] =⇒[id:3,label:software,gremlin.pageRankVertexProgram.pageRank:0.30472009079122486,name:lop,lang:java] =⇒[id:4,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719103,name:josh,age:32] =⇒[id:5,label:software,gremlin.pageRankVertexProgram.pageRank:0.1757988989970823,name:ripple,lang:java] =⇒[id:6,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865538,name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
result = graph.compute().program(PageRankVertexProgram.build().create()).submit().get() result.memory().runtime g = traversal().with(result.graph()) g.V().elementMap()
++++
</div>
</div>
</section>
++++
NOTE: This model of "vertex-centric graph computing" was made popular by Google's
link:http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html[Pregel] graph engine.
In the open source world, this model is found in OLAP graph computing systems such as link:https://giraph.apache.org/[Giraph],
link:https://hama.apache.org/[Hama]. TinkerPop extends the
popularized model with integrated post-processing <<mapreduce,MapReduce>> jobs over the vertex set.
[[mapreduce]]
== MapReduce
The BSP model proposed by Pregel stores the results of the computation in a distributed manner as properties on the
elements in the graph. In many situations, it is necessary to aggregate those resultant properties into a single
result set (i.e. a statistic). For instance, assume a VertexProgram that computes a nominal cluster for each vertex
(i.e. link:http://en.wikipedia.org/wiki/Community_structure[a graph clustering algorithm]). At the end of the
computation, each vertex will have a property denoting the cluster it was assigned to. TinkerPop provides the
ability to answer global questions about the clusters. For instance, in order to answer the following questions,
`MapReduce` jobs are required:
* How many vertices are in each cluster? (*presented below*)
* How many unique clusters are there? (*presented below*)
* What is the average age of each vertex in each cluster?
* What is the degree distribution of the vertices in each cluster?
A compressed representation of the `MapReduce` API in TinkerPop is provided below. The key idea is that the
`map`-stage processes all vertices to emit key/value pairs. Those values are aggregated on their respective key
for the `reduce`-stage to do its processing to ultimately yield more key/value pairs.
[source,java]
public interface MapReduce<MK, MV, RK, RV, R> {
public void map(final Vertex vertex, final MapEmitter<MK, MV> emitter);
public void reduce(final MK key, final Iterator<MV> values, final ReduceEmitter<RK, RV> emitter);
// there are more methods
}
IMPORTANT: The vertex that is passed into the `MapReduce.map()` method does not contain edges. The vertex only
contains original and computed vertex properties. This reduces the amount of data required to be loaded and ensures
that MapReduce is used for post-processing computed results. All edge-based computing should be accomplished in the
`VertexProgram`.
image:mapreduce.png[width=650]
The `MapReduce` extension to GraphComputer is made explicit when examining the
<<peerpressurevertexprogram,`PeerPressureVertexProgram`>> and corresponding `ClusterPopulationMapReduce`.
In the code below, the GraphComputer result returns the computed on `Graph` as well as the `Memory` of the
computation (`ComputerResult`). The memory maintain the results of any MapReduce jobs. The cluster population
MapReduce result states that there are 5 vertices in cluster 1 and 1 vertex in cluster 6. This can be verified
(in a serial manner) by looking at the `PeerPressureVertexProgram.CLUSTER` property of the resultant graph. Notice
that the property is "hidden" unless it is directly accessed via name.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-3" type="radio" name="radio-set-1761594595-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-4" type="radio" name="radio-set-1761594595-3" class="tab-selector-2" />
<label for="tab-1761594595-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerFactory.createModern() =⇒tinkergraph[vertices:6 edges:6] gremlin> result = graph.compute().program(PeerPressureVertexProgram.build().create()).mapReduce(ClusterPopulationMapReduce.build().create()).submit().get() =⇒result[tinkergraph[vertices:6 edges:0],memory[size:1]] gremlin> result.memory().get('clusterPopulation') =⇒1=5 =⇒6=1 gremlin> g = traversal().with(result.graph()) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:0], standard] gremlin> g.V().values(PeerPressureVertexProgram.CLUSTER).groupCount().next() =⇒1=5 =⇒6=1 gremlin> g.V().elementMap() =⇒[id:1,label:person,gremlin.peerPressureVertexProgram.cluster:1,name:marko,age:29] =⇒[id:2,label:person,gremlin.peerPressureVertexProgram.cluster:1,name:vadas,age:27] =⇒[id:3,label:software,gremlin.peerPressureVertexProgram.cluster:1,name:lop,lang:java] =⇒[id:4,label:person,gremlin.peerPressureVertexProgram.cluster:1,name:josh,age:32] =⇒[id:5,label:software,gremlin.peerPressureVertexProgram.cluster:1,name:ripple,lang:java] =⇒[id:6,label:person,gremlin.peerPressureVertexProgram.cluster:6,name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerFactory.createModern() result = graph.compute().program(PeerPressureVertexProgram.build().create()).mapReduce(ClusterPopulationMapReduce.build().create()).submit().get() result.memory().get('clusterPopulation') g = traversal().with(result.graph()) g.V().values(PeerPressureVertexProgram.CLUSTER).groupCount().next() g.V().elementMap()
++++
</div>
</div>
</section>
++++
If there are numerous statistics desired, then its possible to register as many MapReduce jobs as needed. For
instance, the `ClusterCountMapReduce` determines how many unique clusters were created by the peer pressure algorithm.
Below both `ClusterCountMapReduce` and `ClusterPopulationMapReduce` are computed over the resultant graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-5" type="radio" name="radio-set-1761594595-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-5" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-6" type="radio" name="radio-set-1761594595-5" class="tab-selector-2" />
<label for="tab-1761594595-6" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> result = graph.compute().program(PeerPressureVertexProgram.build().create()). mapReduce(ClusterPopulationMapReduce.build().create()). mapReduce(ClusterCountMapReduce.build().create()).submit().get() =⇒result[tinkergraph[vertices:6 edges:0],memory[size:2]] gremlin> result.memory().clusterPopulation =⇒1=5 =⇒6=1 gremlin> result.memory().clusterCount =⇒2
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
result = graph.compute().program(PeerPressureVertexProgram.build().create()). mapReduce(ClusterPopulationMapReduce.build().create()). mapReduce(ClusterCountMapReduce.build().create()).submit().get() result.memory().clusterPopulation result.memory().clusterCount
++++
</div>
</div>
</section>
++++
IMPORTANT: The MapReduce model of TinkerPop does not support MapReduce chaining. Thus, the order in which the
MapReduce jobs are executed is irrelevant. This is made apparent when realizing that the `map()`-stage takes a
`Vertex` as its input and the `reduce()`-stage yields key/value pairs. Thus, the results of reduce can not fed back
into a `map()`.
== A Collection of VertexPrograms
TinkerPop provides a collection of VertexPrograms that implement common algorithms. This section discusses the various
implementations.
IMPORTANT: The vertex programs presented are what are provided as of TinkerPop 3.8.0-SNAPSHOT. Over time, with future releases,
more algorithms will be added.
[[pagerankvertexprogram]]
=== PageRankVertexProgram
image:gremlin-pagerank.png[width=400,float=right] link:http://en.wikipedia.org/wiki/PageRank[PageRank] is perhaps the
most popular OLAP-oriented graph algorithm. This link:http://en.wikipedia.org/wiki/Centrality[eigenvector centrality]
variant was developed by Brin and Page of Google. PageRank defines a centrality value for all vertices in the graph,
where centrality is defined recursively where a vertex is central if it is connected to central vertices. PageRank is
an iterative algorithm that converges to a link:http://en.wikipedia.org/wiki/Ergodicity[steady state distribution]. If
the pageRank values are normalized to 1.0, then the pageRank value of a vertex is the probability that a random walker
will be seen that that vertex in the graph at any arbitrary moment in time. In order to help developers understand the
methods of a `VertexProgram`, the PageRankVertexProgram code is analyzed below.
[source,java]
public class PageRankVertexProgram implements VertexProgram<Double> { <1>
public static final String PAGE_RANK = "gremlin.pageRankVertexProgram.pageRank"; private static final String EDGE_COUNT = "gremlin.pageRankVertexProgram.edgeCount"; private static final String PROPERTY = "gremlin.pageRankVertexProgram.property"; private static final String VERTEX_COUNT = "gremlin.pageRankVertexProgram.vertexCount"; private static final String ALPHA = "gremlin.pageRankVertexProgram.alpha"; private static final String EPSILON = "gremlin.pageRankVertexProgram.epsilon"; private static final String MAX_ITERATIONS = "gremlin.pageRankVertexProgram.maxIterations"; private static final String EDGE_TRAVERSAL = "gremlin.pageRankVertexProgram.edgeTraversal"; private static final String INITIAL_RANK_TRAVERSAL = "gremlin.pageRankVertexProgram.initialRankTraversal"; private static final String TELEPORTATION_ENERGY = "gremlin.pageRankVertexProgram.teleportationEnergy"; private static final String CONVERGENCE_ERROR = "gremlin.pageRankVertexProgram.convergenceError";
private MessageScope.Local<Double> incidentMessageScope = MessageScope.Local.of(__::outE); //2 private MessageScope.Local<Double> countMessageScope = MessageScope.Local.of(new MessageScope.Local.ReverseTraversalSupplier(this.incidentMessageScope)); private PureTraversal<Vertex, Edge> edgeTraversal = null; private PureTraversal<Vertex, ? extends Number> initialRankTraversal = null; private double alpha = 0.85d; private double epsilon = 0.00001d; private int maxIterations = 20; private String property = PAGE_RANK; //3 private Set<VertexComputeKey> vertexComputeKeys; private Set<MemoryComputeKey> memoryComputeKeys;
private PageRankVertexProgram() {
}
@Override
public void loadState(final Graph graph, final Configuration configuration) { //4
if (configuration.containsKey(INITIAL_RANK_TRAVERSAL))
this.initialRankTraversal = PureTraversal.loadState(configuration, INITIAL_RANK_TRAVERSAL, graph);
if (configuration.containsKey(EDGE_TRAVERSAL)) {
this.edgeTraversal = PureTraversal.loadState(configuration, EDGE_TRAVERSAL, graph);
this.incidentMessageScope = MessageScope.Local.of(() -> this.edgeTraversal.get().clone());
this.countMessageScope = MessageScope.Local.of(new MessageScope.Local.ReverseTraversalSupplier(this.incidentMessageScope));
}
this.alpha = configuration.getDouble(ALPHA, this.alpha);
this.epsilon = configuration.getDouble(EPSILON, this.epsilon);
this.maxIterations = configuration.getInt(MAX_ITERATIONS, 20);
this.property = configuration.getString(PROPERTY, PAGE_RANK);
this.vertexComputeKeys = new HashSet<>(Arrays.asList(
VertexComputeKey.of(this.property, false),
VertexComputeKey.of(EDGE_COUNT, true))); //5
this.memoryComputeKeys = new HashSet<>(Arrays.asList(
MemoryComputeKey.of(TELEPORTATION_ENERGY, Operator.sum, true, true),
MemoryComputeKey.of(VERTEX_COUNT, Operator.sum, true, true),
MemoryComputeKey.of(CONVERGENCE_ERROR, Operator.sum, false, true)));
}
@Override
public void storeState(final Configuration configuration) {
VertexProgram.super.storeState(configuration);
configuration.setProperty(ALPHA, this.alpha);
configuration.setProperty(EPSILON, this.epsilon);
configuration.setProperty(PROPERTY, this.property);
configuration.setProperty(MAX_ITERATIONS, this.maxIterations);
if (null != this.edgeTraversal)
this.edgeTraversal.storeState(configuration, EDGE_TRAVERSAL);
if (null != this.initialRankTraversal)
this.initialRankTraversal.storeState(configuration, INITIAL_RANK_TRAVERSAL);
}
@Override
public GraphComputer.ResultGraph getPreferredResultGraph() {
return GraphComputer.ResultGraph.NEW;
}
@Override
public GraphComputer.Persist getPreferredPersist() {
return GraphComputer.Persist.VERTEX_PROPERTIES;
}
@Override
public Set<VertexComputeKey> getVertexComputeKeys() { //6
return this.vertexComputeKeys;
}
@Override
public Optional<MessageCombiner<Double>> getMessageCombiner() {
return (Optional) PageRankMessageCombiner.instance();
}
@Override
public Set<MemoryComputeKey> getMemoryComputeKeys() {
return this.memoryComputeKeys;
}
@Override
public Set<MessageScope> getMessageScopes(final Memory memory) {
final Set<MessageScope> set = new HashSet<>();
set.add(memory.isInitialIteration() ? this.countMessageScope : this.incidentMessageScope);
return set;
}
@Override
public PageRankVertexProgram clone() {
try {
final PageRankVertexProgram clone = (PageRankVertexProgram) super.clone();
if (null != this.initialRankTraversal)
clone.initialRankTraversal = this.initialRankTraversal.clone();
return clone;
} catch (final CloneNotSupportedException e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
@Override
public void setup(final Memory memory) {
memory.set(TELEPORTATION_ENERGY, null == this.initialRankTraversal ? 1.0d : 0.0d);
memory.set(VERTEX_COUNT, 0.0d);
memory.set(CONVERGENCE_ERROR, 1.0d);
}
@Override
public void execute(final Vertex vertex, Messenger<Double> messenger, final Memory memory) { //7
if (memory.isInitialIteration()) {
messenger.sendMessage(this.countMessageScope, 1.0d); //8
memory.add(VERTEX_COUNT, 1.0d);
} else {
final double vertexCount = memory.<Double>get(VERTEX_COUNT);
final double edgeCount;
double pageRank;
if (1 == memory.getIteration()) {
edgeCount = IteratorUtils.reduce(messenger.receiveMessages(), 0.0d, (a, b) -> a + b);
vertex.property(VertexProperty.Cardinality.single, EDGE_COUNT, edgeCount);
pageRank = null == this.initialRankTraversal ?
0.0d :
TraversalUtil.apply(vertex, this.initialRankTraversal.get()).doubleValue(); //9
} else {
edgeCount = vertex.value(EDGE_COUNT);
pageRank = IteratorUtils.reduce(messenger.receiveMessages(), 0.0d, (a, b) -> a + b); //10
}
//////////////////////////
final double teleporationEnergy = memory.get(TELEPORTATION_ENERGY);
if (teleporationEnergy > 0.0d) {
final double localTerminalEnergy = teleporationEnergy / vertexCount;
pageRank = pageRank + localTerminalEnergy;
memory.add(TELEPORTATION_ENERGY, -localTerminalEnergy);
}
final double previousPageRank = vertex.<Double>property(this.property).orElse(0.0d);
memory.add(CONVERGENCE_ERROR, Math.abs(pageRank - previousPageRank));
vertex.property(VertexProperty.Cardinality.single, this.property, pageRank);
memory.add(TELEPORTATION_ENERGY, (1.0d - this.alpha) * pageRank);
pageRank = this.alpha * pageRank;
if (edgeCount > 0.0d)
messenger.sendMessage(this.incidentMessageScope, pageRank / edgeCount);
else
memory.add(TELEPORTATION_ENERGY, pageRank);
}
}
@Override
public boolean terminate(final Memory memory) { //11
boolean terminate = memory.<Double>get(CONVERGENCE_ERROR) < this.epsilon || memory.getIteration() >= this.maxIterations;
memory.set(CONVERGENCE_ERROR, 0.0d);
return terminate;
}
@Override
public String toString() {
return StringFactory.vertexProgramString(this, "alpha=" + this.alpha + ", epsilon=" + this.epsilon + ", iterations=" + this.maxIterations);
}
}
<1> `PageRankVertexProgram` implements `VertexProgram<Double>` because the messages it sends are Java doubles.
<2> The default path of energy propagation is via outgoing edges from the current vertex.
<3> The resulting PageRank values for the vertices are stored as a vertex property.
<4> A vertex program is constructed using an Apache `Configuration` to ensure easy dissemination across a cluster of JVMs.
<5> `EDGE_COUNT` is a transient "scratch data" compute key while `PAGE_RANK` is not.
<6> A vertex program must define the "compute keys" that are the properties being operated on during the computation.
<7> The "while"-loop of the vertex program.
<8> In order to determine how to distribute the energy to neighbors, a "1"-count is used to determine how many incident vertices exist for the `MessageScope`.
<9> Initially, each vertex is provided an equal amount of energy represented as a double.
<10> Energy is aggregated, computed on according to the PageRank algorithm, and then disseminated according to the defined `MessageScope.Local`.
<11> The computation is terminated after epsilon-convergence is met or a pre-defined number of iterations have taken place.
The above `PageRankVertexProgram` is used as follows.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-7" type="radio" name="radio-set-1761594595-7" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-7" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-8" type="radio" name="radio-set-1761594595-7" class="tab-selector-2" />
<label for="tab-1761594595-8" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> result = graph.compute().program(PageRankVertexProgram.build().create()).submit().get() =⇒result[tinkergraph[vertices:6 edges:0],memory[size:0]] gremlin> result.memory().runtime =⇒5 gremlin> g = traversal().with(result.graph()) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:0], standard] gremlin> g.V().elementMap() =⇒[id:1,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865543,name:marko,age:29] =⇒[id:2,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719108,name:vadas,age:27] =⇒[id:3,label:software,gremlin.pageRankVertexProgram.pageRank:0.3047200907912249,name:lop,lang:java] =⇒[id:4,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719108,name:josh,age:32] =⇒[id:5,label:software,gremlin.pageRankVertexProgram.pageRank:0.17579889899708234,name:ripple,lang:java] =⇒[id:6,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865543,name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
result = graph.compute().program(PageRankVertexProgram.build().create()).submit().get() result.memory().runtime g = traversal().with(result.graph()) g.V().elementMap()
++++
</div>
</div>
</section>
++++
Note that `GraphTraversal` provides a <<pagerank-step,`pageRank()`>>-step.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-9" type="radio" name="radio-set-1761594595-9" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-9" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-10" type="radio" name="radio-set-1761594595-9" class="tab-selector-2" />
<label for="tab-1761594595-10" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with(graph).withComputer() =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer] gremlin> g.V().pageRank().elementMap() =⇒[id:5,label:software,gremlin.pageRankVertexProgram.pageRank:0.1757988989970823,name:ripple,lang:java] =⇒[id:2,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719103,name:vadas,age:27] =⇒[id:3,label:software,gremlin.pageRankVertexProgram.pageRank:0.3047200907912249,name:lop,lang:java] =⇒[id:6,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865537,name:peter,age:35] =⇒[id:1,label:person,gremlin.pageRankVertexProgram.pageRank:0.11375510357865537,name:marko,age:29] =⇒[id:4,label:person,gremlin.pageRankVertexProgram.pageRank:0.14598540152719103,name:josh,age:32] gremlin> g.V().pageRank(). with(PageRank.propertyName, 'pageRank'). with(PageRank.times, 5). order(). by('pageRank'). elementMap() =⇒[id:5,label:software,pageRank:0.1756689971547068,name:ripple,lang:java] =⇒[id:4,label:person,pageRank:0.14598422136890216,name:josh,age:32] =⇒[id:2,label:person,pageRank:0.14598422136890216,name:vadas,age:27] =⇒[id:6,label:person,pageRank:0.1136216612614133,name:peter,age:35] =⇒[id:1,label:person,pageRank:0.1136216612614133,name:marko,age:29] =⇒[id:3,label:software,pageRank:0.3051192375846622,name:lop,lang:java]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with(graph).withComputer() g.V().pageRank().elementMap() g.V().pageRank(). with(PageRank.propertyName, 'pageRank'). with(PageRank.times, 5). order(). by('pageRank'). elementMap()
++++
</div>
</div>
</section>
++++
[[peerpressurevertexprogram]]
=== PeerPressureVertexProgram
The `PeerPressureVertexProgram` is a clustering algorithm that assigns a nominal value to each vertex in the graph.
The nominal value represents the vertex's cluster. If two vertices have the same nominal value, then they are in the
same cluster. The algorithm proceeds in the following manner.
. Every vertex assigns itself to a unique cluster ID (initially, its vertex ID).
. Every vertex determines its per neighbor vote strength as 1.0d / incident edges count.
. Every vertex sends its cluster ID and vote strength to its adjacent vertices as a `Pair<Serializable,Double>`
. Every vertex generates a vote energy distribution of received cluster IDs and changes its current cluster ID to the most frequent cluster ID.
.. If there is a tie, then the cluster with the lowest `toString()` comparison is selected.
. Steps 3 and 4 repeat until either a max number of iterations has occurred or no vertex has adjusted its cluster anymore.
Note that `GraphTraversal` provides a <<peerpressure-step,`peerPressure()`>>-step.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-11" type="radio" name="radio-set-1761594595-11" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-11" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-12" type="radio" name="radio-set-1761594595-11" class="tab-selector-2" />
<label for="tab-1761594595-12" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with(graph).withComputer() =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer] gremlin> g.V().peerPressure().with(PeerPressure.propertyName, 'cluster').elementMap() =⇒[id:1,label:person,cluster:1,name:marko,age:29] =⇒[id:2,label:person,cluster:1,name:vadas,age:27] =⇒[id:3,label:software,cluster:1,name:lop,lang:java] =⇒[id:4,label:person,cluster:1,name:josh,age:32] =⇒[id:5,label:software,cluster:1,name:ripple,lang:java] =⇒[id:6,label:person,cluster:6,name:peter,age:35] gremlin> g.V().peerPressure(). with(PeerPressure.edges,outE('knows')). with(PeerPressure.propertyName, 'cluster'). elementMap() =⇒[id:1,label:person,cluster:1,name:marko,age:29] =⇒[id:3,label:software,cluster:3,name:lop,lang:java] =⇒[id:2,label:person,cluster:1,name:vadas,age:27] =⇒[id:4,label:person,cluster:1,name:josh,age:32] =⇒[id:5,label:software,cluster:5,name:ripple,lang:java] =⇒[id:6,label:person,cluster:6,name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with(graph).withComputer() g.V().peerPressure().with(PeerPressure.propertyName, 'cluster').elementMap() g.V().peerPressure(). with(PeerPressure.edges,outE('knows')). with(PeerPressure.propertyName, 'cluster'). elementMap()
++++
</div>
</div>
</section>
++++
[[connectedcomponentvertexprogram]]
=== ConnectedComponentVertexProgram
The `ConnectedComponentVertexProgram` identifies link:https://en.wikipedia.org/wiki/Connected_component_(graph_theory)[Connected Component]
instances in a graph. See <<connectedcomponent-step,`connectedComponent()`>>-step for more information.
[[shortestpathvertexprogram]]
=== ShortestPathVertexProgram
The `ShortestPathVertexProram` provides an easy way to find shortest non-cyclic paths in the graph. It provides several options to configure
the output format, the start- and end-vertices, the direction, a custom distance function, as well as a distance limitation. By default it just
finds all undirected, shortest paths in the graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-13" type="radio" name="radio-set-1761594595-13" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-13" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-14" type="radio" name="radio-set-1761594595-13" class="tab-selector-2" />
<label for="tab-1761594595-14" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> spvp = ShortestPathVertexProgram.build().create() //// <1> =⇒ShortestPathVertexProgram[includeEdges=false] gremlin> result = graph.compute().program(spvp).submit().get() //// <2> =⇒result[tinkergraph[vertices:6 edges:6],memory[size:1]] gremlin> result.memory().get(ShortestPathVertexProgram.SHORTEST_PATHS) //// <3> =⇒[v[1]] =⇒[v[2],v[1]] =⇒[v[3],v[1]] =⇒[v[4],v[1]] =⇒[v[5],v[4],v[1]] =⇒[v[6],v[3],v[1]] =⇒[v[1],v[2]] =⇒[v[2]] =⇒[v[3],v[1],v[2]] =⇒[v[4],v[1],v[2]] =⇒[v[5],v[4],v[1],v[2]] =⇒[v[6],v[3],v[1],v[2]] =⇒[v[1],v[3]] =⇒[v[2],v[1],v[3]] =⇒[v[3]] =⇒[v[4],v[3]] =⇒[v[5],v[4],v[3]] =⇒[v[6],v[3]] =⇒[v[1],v[4]] =⇒[v[2],v[1],v[4]] =⇒[v[3],v[4]] =⇒[v[4]] =⇒[v[5],v[4]] =⇒[v[6],v[3],v[4]] =⇒[v[1],v[4],v[5]] =⇒[v[2],v[1],v[4],v[5]] =⇒[v[3],v[4],v[5]] =⇒[v[4],v[5]] =⇒[v[5]] =⇒[v[6],v[3],v[4],v[5]] =⇒[v[1],v[3],v[6]] =⇒[v[2],v[1],v[3],v[6]] =⇒[v[3],v[6]] =⇒[v[4],v[3],v[6]] =⇒[v[5],v[4],v[3],v[6]] =⇒[v[6]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
spvp = ShortestPathVertexProgram.build().create() //// <1> result = graph.compute().program(spvp).submit().get() //// <2> result.memory().get(ShortestPathVertexProgram.SHORTEST_PATHS) <3>
++++
</div>
</div>
</section>
++++
<1> Create a `ShortestPathVertexProgram` with its default configuration.
<2> Execute the `ShortestPathVertexProgram`.
<3> Get all shortest paths from the results memory.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-15" type="radio" name="radio-set-1761594595-15" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-15" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-16" type="radio" name="radio-set-1761594595-15" class="tab-selector-2" />
<label for="tab-1761594595-16" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> spvp = ShortestPathVertexProgram.build().includeEdges(true).create() //// <1> =⇒ShortestPathVertexProgram[includeEdges=true] gremlin> result = graph.compute().program(spvp).submit().get() //// <2> =⇒result[tinkergraph[vertices:6 edges:6],memory[size:1]] gremlin> result.memory().get(ShortestPathVertexProgram.SHORTEST_PATHS) //// <3> =⇒[v[1]] =⇒[v[2],e[7][1-knows→2],v[1]] =⇒[v[3],e[9][1-created→3],v[1]] =⇒[v[4],e[8][1-knows→4],v[1]] =⇒[v[5],e[10][4-created→5],v[4],e[8][1-knows→4],v[1]] =⇒[v[6],e[12][6-created→3],v[3],e[9][1-created→3],v[1]] =⇒[v[1],e[7][1-knows→2],v[2]] =⇒[v[2]] =⇒[v[3],e[9][1-created→3],v[1],e[7][1-knows→2],v[2]] =⇒[v[4],e[8][1-knows→4],v[1],e[7][1-knows→2],v[2]] =⇒[v[5],e[10][4-created→5],v[4],e[8][1-knows→4],v[1],e[7][1-knows→2],v[2]] =⇒[v[6],e[12][6-created→3],v[3],e[9][1-created→3],v[1],e[7][1-knows→2],v[2]] =⇒[v[1],e[8][1-knows→4],v[4],e[10][4-created→5],v[5]] =⇒[v[2],e[7][1-knows→2],v[1],e[8][1-knows→4],v[4],e[10][4-created→5],v[5]] =⇒[v[3],e[11][4-created→3],v[4],e[10][4-created→5],v[5]] =⇒[v[4],e[10][4-created→5],v[5]] =⇒[v[5]] =⇒[v[6],e[12][6-created→3],v[3],e[11][4-created→3],v[4],e[10][4-created→5],v[5]] =⇒[v[1],e[8][1-knows→4],v[4]] =⇒[v[2],e[7][1-knows→2],v[1],e[8][1-knows→4],v[4]] =⇒[v[3],e[11][4-created→3],v[4]] =⇒[v[4]] =⇒[v[5],e[10][4-created→5],v[4]] =⇒[v[6],e[12][6-created→3],v[3],e[11][4-created→3],v[4]] =⇒[v[1],e[9][1-created→3],v[3],e[12][6-created→3],v[6]] =⇒[v[2],e[7][1-knows→2],v[1],e[9][1-created→3],v[3],e[12][6-created→3],v[6]] =⇒[v[3],e[12][6-created→3],v[6]] =⇒[v[4],e[11][4-created→3],v[3],e[12][6-created→3],v[6]] =⇒[v[5],e[10][4-created→5],v[4],e[11][4-created→3],v[3],e[12][6-created→3],v[6]] =⇒[v[6]] =⇒[v[1],e[9][1-created→3],v[3]] =⇒[v[2],e[7][1-knows→2],v[1],e[9][1-created→3],v[3]] =⇒[v[3]] =⇒[v[4],e[11][4-created→3],v[3]] =⇒[v[5],e[10][4-created→5],v[4],e[11][4-created→3],v[3]] =⇒[v[6],e[12][6-created→3],v[3]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
spvp = ShortestPathVertexProgram.build().includeEdges(true).create() //// <1> result = graph.compute().program(spvp).submit().get() //// <2> result.memory().get(ShortestPathVertexProgram.SHORTEST_PATHS) <3>
++++
</div>
</div>
</section>
++++
<1> Create a `ShortestPathVertexProgram` as before, but configure it to include edges in the result.
<2> Execute the `ShortestPathVertexProgram`.
<3> Get all shortest paths from the results memory.
The `ShortestPathVertexProgram.Builder` provides the following configuration methods:
[width="100%",cols="3,15,5",options="header"]
|=========================================================
| Method | Description | Default
| `source(Traversal)` | Sets a filter traversal for the start vertices (e.g. `__.has('name','marko')`). | all vertices (`__.identity()`)
| `target(Traversal)` | Sets a filter traversal for the end vertices. | all vertices
| `edgeDirection(Direction)` | Sets the direction to traverse during the shortest path discovery. | `Direction.BOTH`
| `edgeTraversal(Traversal)` | Sets a traversal that emits the edges to traverse from the current vertex. | `__.bothE()`
| `distanceProperty(String)` | Sets the edge property to use for the distance calculations. | none
| `distanceTraversal(Traversal)` | Sets the traversal that calculates the distance for the current edge. | `__.constant(1)`
| `maxDistance(Traversal)` | Limits the shortest path distance. | none
| `includeEdges(Boolean)` | Whether to include edges in shortest paths or not. | `false`
|=========================================================
IMPORTANT: If a maximum distance is provided, the discovery process will only stop to follow a path at this distance if there was no
custom distance property or traversal provided. Custom distances can be negative, hence exceeding the maximum distance doesn't mean that there
can't be any more valid paths. However, paths will be filtered at the end, when no more non-cyclic paths can be found. The bottom line is that
custom distance properties or traversals can lead to much longer runtimes and a much higher memory consumption.
Note that `GraphTraversal` provides a <<shortestpath-step,`shortestPath()`>>-step.
[[clonevertexprogram]]
=== CloneVertexProgram
The `CloneVertexProgram` (known in versions prior to 3.2.10 as `BulkDumperVertexProgram`) copies a whole graph from
any graph `InputFormat` to any graph `OutputFormat`. TinkerPop provides the following:
* `OutputFormat`
** `GraphSONOutputFormat`
** `GryoOutputFormat`
** `ScriptOutputFormat`
* `InputFormat`
** `GraphSONInputFormat`
** `GryoInputFormat`
** `ScriptInputFormat`).
An <<clonevertexprogramusingspark,example>> is provided in the SparkGraphComputer section.
Graph Providers should consider writing their own `OutputFormat` and `InputFormat` which would allow bulk loading and
export capabilities through this `VertexProgram`. This topic is discussed further in the
link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#bulk-import-export[Provider Documentation].
[[traversalvertexprogram]]
=== TraversalVertexProgram
image:traversal-vertex-program.png[width=250,float=left] The `TraversalVertexProgram` is a "special" VertexProgram in
that it can be executed via a `Traversal` and a `GraphComputer`. In Gremlin, it is possible to have
the same traversal executed using either the standard OLTP-engine or the `GraphComputer` OLAP-engine. The difference
being where the traversal is submitted.
NOTE: This model of graph traversal in a BSP system was first implemented by the
link:https://github.com/thinkaurelius/faunus/wiki[Faunus] graph analytics engine and originally described in
link:https://dzone.com/articles/local-and-distributed-graph[Local and Distributed Traversal Engines].
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-17" type="radio" name="radio-set-1761594595-17" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-17" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-18" type="radio" name="radio-set-1761594595-17" class="tab-selector-2" />
<label for="tab-1761594595-18" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> g.V().both().hasLabel('person').values('age').groupCount().next() // OLTP =⇒32=3 =⇒35=1 =⇒27=1 =⇒29=3 gremlin> g = traversal().with(graph).withComputer() =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], graphcomputer] gremlin> g.V().both().hasLabel('person').values('age').groupCount().next() // OLAP =⇒32=3 =⇒35=1 =⇒27=1 =⇒29=3
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with(graph) g.V().both().hasLabel('person').values('age').groupCount().next() // OLTP g = traversal().with(graph).withComputer() g.V().both().hasLabel('person').values('age').groupCount().next() // OLAP
++++
</div>
</div>
</section>
++++
image::olap-traversal.png[width=650]
In the OLAP example above, a `TraversalVertexProgram` is (logically) sent to each vertex in the graph. Each instance
evaluation requires (logically) 5 BSP iterations and each iteration is interpreted as such:
. `g.V()`: Put a traverser on each vertex in the graph.
. `both()`: Propagate each traverser to the vertices `both`-adjacent to its current vertex.
. `hasLabel('person')`: If the vertex is not a person, kill the traversers at that vertex.
. `values('age')`: Have all the traversers reference the integer age of their current vertex.
. `groupCount()`: Count how many times a particular age has been seen.
While 5 iterations were presented, in fact, `TraversalVertexProgram` will execute the traversal in only
2 iterations. The reason being is that `g.V().both()` and `hasLabel('person').values('age').groupCount()` can be
executed in a single iteration as any message sent would simply be to the current executing vertex. Thus, a simple optimization
exists in Gremlin OLAP called "reflexive message passing" which simulates non-message-passing BSP iterations within a
single BSP iteration.
The same OLAP traversal can be executed using the standard `graph.compute()` model, though at the expense of verbosity.
`TraversalVertexProgram` provides a fluent `Builder` for constructing a `TraversalVertexProgram`. The specified
`traversal()` can be either a direct `Traversal` object or a
link:http://en.wikipedia.org/wiki/Scripting_for_the_Java_Platform[JSR-223] script that will generate a
`Traversal`. There is no benefit to using the model below. It is demonstrated to help elucidate how Gremlin OLAP traversals
are ultimately compiled for execution on a `GraphComputer`.
++++
<section class="tabs tabs-2">
<input id="tab-1761594595-19" type="radio" name="radio-set-1761594595-19" class="tab-selector-1" checked="checked" />
<label for="tab-1761594595-19" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594595-20" type="radio" name="radio-set-1761594595-19" class="tab-selector-2" />
<label for="tab-1761594595-20" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> result = graph.compute().program(TraversalVertexProgram.build().traversal(g.V().both().hasLabel('person').values('age').groupCount('a')).create()).submit().get() =⇒result[tinkergraph[vertices:6 edges:6],memory[size:2]] gremlin> result.memory().a =⇒32=3 =⇒35=1 =⇒27=1 =⇒29=3 gremlin> result.memory().iteration =⇒1 gremlin> result.memory().runtime =⇒5
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
result = graph.compute().program(TraversalVertexProgram.build().traversal(g.V().both().hasLabel('person').values('age').groupCount('a')).create()).submit().get() result.memory().a result.memory().iteration result.memory().runtime
++++
</div>
</div>
</section>
++++
[[distributed-gremlin-gotchas]]
==== Distributed Gremlin Gotchas
Gremlin OLTP is not identical to Gremlin OLAP.
IMPORTANT: There are two primary theoretical differences between Gremlin OLTP and Gremlin OLAP. First, Gremlin OLTP
(via `Traversal`) leverages a link:http://en.wikipedia.org/wiki/Depth-first_search[depth-first] execution engine.
Depth-first execution has a limited memory footprint due to link:http://en.wikipedia.org/wiki/Lazy_evaluation[lazy evaluation].
On the other hand, Gremlin OLAP (via `TraversalVertexProgram`) leverages a
link:http://en.wikipedia.org/wiki/Breadth-first_search[breadth-first] execution engine which maintains a larger memory
footprint, but a better time complexity due to vertex-local traversers being able to be "bulked." The second difference
is that Gremlin OLTP is executed in a serial/streaming fashion, while Gremlin OLAP is executed in a parallel/step-wise fashion. These two
fundamental differences lead to the behaviors enumerated below.
image::gremlin-without-a-cause.png[width=200,float=right]
. Traversal sideEffects are represented as a distributed data structure across `GraphComputer` workers. It is not
possible to get a global view of a sideEffect until after an iteration has occurred and global sideEffects are re-broadcasted to the workers.
In some situations, a "stale" local representation of the sideEffect is sufficient to ensure the intended semantics of the
traversal are respected. However, this is not generally true so be wary of traversals that require global views of a
sideEffect. To ensure a fresh global representation, use `barrier()` prior to accessing the global sideEffect. Note that this
only comes into play with custom steps and <<general-steps,lambda steps>>. The standard Gremlin step library is respective of OLAP semantics.
. When evaluating traversals that rely on path information (i.e. the history of the traversal), practical
computational limits can easily be reached due the link:http://en.wikipedia.org/wiki/Combinatorial_explosion[combinatoric explosion]
of data. With path computing enabled, every traverser is unique and thus, must be enumerated as opposed to being
counted/merged. The difference being a collection of paths vs. a single 64-bit long at a single vertex. In other words,
bulking is very unlikely with traversers that maintain path information. For more
information on this concept, please see link:https://thinkaurelius.wordpress.com/2012/11/11/faunus-provides-big-graph-data-analytics/[Faunus Provides Big Graph Data].
. Steps that are concerned with the global ordering of traversers do not have a meaningful representation in
OLAP. For example, what does <<order-step,`order()`>>-step mean when all traversers are being processed in parallel?
Even if the traversers were aggregated and ordered, then at the next step they would return to being executed in
parallel and thus, in an unpredictable order. When `order()`-like steps are executed at the end of a traversal (i.e
the final step), `TraversalVertexProgram` ensures a serial representation is ordered accordingly. Moreover, it is intelligent enough
to maintain the ordering of `g.V().hasLabel("person").order().by("age").values("name")`. However, the OLAP traversal
`g.V().hasLabel("person").order().by("age").out().values("name")` will lose the original ordering as the `out()`-step
will rebroadcast traversers across the cluster.
[[graph-filter]]
== Graph Filter
Most OLAP jobs do not require the entire source graph to faithfully execute their `VertexProgram`. For instance, if
`PageRankVertexProgram` is only going to compute the centrality of people in the friendship-graph, then the following
`GraphFilter` can be applied.
[source,java]
graph.computer(). vertices(hasLabel("person")). vertexProperties(__.properties("name")). edges(bothE("knows")). program(PageRankVertexProgram…)
There are three methods for constructing a `GraphFilter`. * `vertices(Traversal<Vertex,Vertex>)`: A traversal that will be used that can only analyze a vertex and its properties. If the traversal `hasNext()`, the input `Vertex` is passed to the `GraphComputer`. * `vertexProperties(Traversal<Vertex, ? extends Property<?>)`: A traversal that will either let the vertex property pass or not. * `edges(Traversal<Vertex,Edge>)`: A traversal that will iterate all legal edges for the source vertex. `GraphFilter` is a "push-down predicate" that providers can reason on to determine the most efficient way to provide graph data to the `GraphComputer`. IMPORTANT: Apache TinkerPop provides `GraphFilterStrategy` <<traversalstrategy,traversal strategy>> which analyzes a submitted OLAP traversal and, if possible, creates an appropriate `GraphFilter` automatically. For instance, `g.V().count()` would yield a `GraphFilter.edges(limit(0))`. Thus, for traversal submissions, users typically do not need to be aware of creating graph filters explicitly. Users can use the <<explain-step,`explain()`>>-step to see the `GraphFilter` generated by `GraphFilterStrategy`. // LAST LINE //// //// [[gremlin-applications]] = Gremlin Applications Gremlin applications represent tools that are built on top of the core APIs to help expose common functionality to users when working with graphs. There are two key applications: . Gremlin Console - A link:http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop[REPL] environment for interactive development and analysis . Gremlin Server - A server that hosts a Gremlin Traversal Machine thus enabling remote Gremlin execution image:gremlin-lab-coat.png[width=310,float=left] Gremlin is designed to be extensible, making it possible for users and graph system/language providers to customize it to their needs. Such extensibility is also found in the Gremlin Console and Server, where a universal plugin system makes it possible to extend their capabilities. One of the important aspects of the plugin system is the ability to help the user install the plugins through the command line thus automating the process of gathering dependencies and other error prone activities. The process of plugin installation is handled by link:http://www.groovy-lang.org/Grape[Grape], which helps resolve dependencies into the classpath. It is therefore important to ensure that Grape is properly configured in order to use the automated capabilities of plugin installation. Grape is configured by `~/.groovy/grapeConfig.xml` and generally speaking, if that file is not present, the default settings will suffice. However, they will not suffice if a required dependency is not in one of the default configured repositories. Please see the link:http://www.groovy-lang.org/Grape#Grape-CustomizeIvysettings[Customize Ivy settings] section of the Grape documentation for more details on the defaults. For current TinkerPop plugins and dependencies the following configuration which is also the default for Ivy should be acceptable: [source,xml]
<ivysettings> <settings defaultResolver="downloadGrapes"/> <resolvers> <chain name="downloadGrapes" returnFirst="true"> <filesystem name="cachedGrapes"> <ivy pattern="${user.home}/.groovy/grapes/[organisation]/[module]/ivy-[revision].xml"/> <artifact pattern="${user.home}/.groovy/grapes/[organisation]/[module]/[type]s/[artifact]-[revision](-[classifier]).[ext]"/> </filesystem> <ibiblio name="localm2" root="${user.home.url}/.m2/repository/" checkmodified="true" changingPattern=".*" changingMatcher="regexp" m2compatible="true"/> <ibiblio name="jcenter" root="https://jcenter.bintray.com/" m2compatible="true"/> <ibiblio name="ibiblio" m2compatible="true"/> </chain> </resolvers> </ivysettings>
TIP: Please see the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/developer/#groovy-environment[Developer Documentation] for additional configuration options when working with "snapshot" releases. [[gremlin-console]] == Gremlin Console image:gremlin-console.png[width=325,float=right] The Gremlin Console is an interactive terminal or link:http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop[REPL] that can be used to traverse graphs and interact with the data that they contain. It represents the most common method for performing ad hoc graph analysis, small to medium sized data loading projects and other exploratory functions. The Gremlin Console is highly extensible, featuring a rich plugin system that allows new tools, commands, link:http://en.wikipedia.org/wiki/Domain-specific_language[DSLs], etc. to be exposed to users. To start the Gremlin Console, run `gremlin.sh` or `gremlin.bat`: [source,text]
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin loaded: tinkerpop.server
plugin loaded: tinkerpop.utilities
plugin loaded: tinkerpop.tinkergraph
gremlin>
NOTE: If the above plugins are not loaded then they will need to be enabled or else certain examples will not work.
If using the standard Gremlin Console distribution, then the plugins should be enabled by default. See below for
more information on the `:plugin use` command to manually enable plugins. These plugins, with the exception of
`tinkerpop.tinkergraph`, cannot be removed from the Console as they are a part of the `gremlin-console.jar` itself.
These plugins can only be deactivated.
The Gremlin Console is loaded and ready for commands. Recall that the console hosts the Gremlin-Groovy language.
Please review link:http://www.groovy-lang.org/[Groovy] for help on Groovy-related constructs. In short, Groovy is a
superset of Java. What works in Java, works in Groovy. However, Groovy provides many shorthands to make it easier
to interact with the Java API. Moreover, Gremlin provides many neat shorthands to make it easier to express paths
through a property graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-1" type="radio" name="radio-set-1761594617-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-2" type="radio" name="radio-set-1761594617-1" class="tab-selector-2" />
<label for="tab-1761594617-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> i = 'goodbye' =⇒goodbye gremlin> j = 'self' =⇒self gremlin> i + " " + j =⇒goodbye self gremlin> "${i} ${j}" =⇒goodbye self
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
i = 'goodbye' j = 'self' i + " " + j "${i} ${j}"
++++
</div>
</div>
</section>
++++
The "toy" graph provides a way to get started with Gremlin quickly.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-3" type="radio" name="radio-set-1761594617-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-4" type="radio" name="radio-set-1761594617-3" class="tab-selector-2" />
<label for="tab-1761594617-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with(TinkerFactory.createModern()) =⇒graphtraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> g.V() =⇒v[1] =⇒v[2] =⇒v[3] =⇒v[4] =⇒v[5] =⇒v[6] gremlin> g.V().values('name') =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter gremlin> g.V().has('name','marko').out('knows').values('name') =⇒vadas =⇒josh
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with(TinkerFactory.createModern()) g.V() g.V().values('name') g.V().has('name','marko').out('knows').values('name')
++++
</div>
</div>
</section>
++++
TIP: When using Gremlin-Groovy in a Groovy class file, add `static { GremlinLoader.load() }` to the head of the file.
=== Console Commands
In addition to the standard commands of the link:http://groovy-lang.org/groovysh.html[Groovy Shell], Gremlin adds
some other useful operations. The following table outlines the most commonly used commands:
[width="100%",cols="3,^2,10",options="header"]
|=========================================================
|Command |Alias |Description
|:help |:? |Displays list of commands and descriptions. When followed by a command name, it will display more specific help on that particular item.
|:exit |:x |Ends the Console session.
|import |:i |Import a class into the Console session.
|:cls |:C |Clear the screen of the Console.
|:clear |:c |Sometimes the Console can get into a state where the command buffer no longer understands input (e.g. a misplaced `(` or `}`). Use this command to clear that buffer.
|:load |:l |Load a file or URL into the command buffer for execution.
|:install |:+ |Imports a Maven library and its dependencies into the Console.
|:uninstall |:- |Removes a Maven library and its dependencies. A restart of the console is required for removal to fully take effect.
|:plugin |:pin |Plugin management functions to list, activate and deactivate available plugins.
|:remote |:rem |Configures a "remote" context where Gremlin or results of Gremlin will be processed via usage of `:submit`.
|:submit |:> |Submit Gremlin to the currently active context defined by `:remote`.
|:bytecode |:bc |Provides options for translating and evaluating `Bytecode` for debugging purposes.
|=========================================================
Many of the above commands are described elsewhere or are generally self-explanatory, but the `:bytecode` command
could use some additional explanation. The following code shows example usage:
[source,text]
gremlin> :bytecode from g.V().out('knows') <1> =⇒{"@type":"g:Bytecode","@value":{"step":[["V"],["out","knows"]]}} gremlin> :bytecode translate g {"@type":"g:Bytecode","@value":{"step":[["V"],["out","knows"]]}} <2> =⇒g.V().out("knows") gremlin> m = GraphSONMapper.build().create() =⇒org.apache.tinkerpop.gremlin.structure.io.graphson.GraphSONMapper@69d6a7cd gremlin> :bc config m <3> =⇒Configured bytecode serializer gremlin> :bc from g.V().property('d',java.time.YearMonth.now()) <4> Could not find a type identifier for the class : class java.time.Month. Make sure the value to serialize has a type identifier registered for its class. (through reference chain: java.time.YearMonth["month"]) Type ':help' or ':h' for help. Display stack trace? [yN]n gremlin> :bc reset <5> =⇒Bytecode serializer reset to GraphSON 3.0 with extensions and TinkerGraph serializers gremlin> :bc from g.V().property('d',java.time.YearMonth.now()) =⇒{"@type":"g:Bytecode","@value":{"step":[["V"],["property","d",{"@type":"gx:YearMonth","@value":"2020-11"}]]}}
<1> Generates a GraphSON 3.0 representation of the traversal as bytecode. <2> Converts bytecode in GraphSON 3.0 format to a traversal string. <3> Configure a custom `GraphSONMapper` for the `:bytecode` command to use which can be helpful when working with custom classes from different graph providers. The `config` option can take a `GraphSONMapper` argument as shown or one or more `IoRegistry` or `SimpleModule` implementations that will plug into the default `GraphSONMapper` constructed by the `:bytecode` command. The default will configure for GraphSON 3.0 with the extensions module and, if present, the `TinkerIoRegistry` from TinkerGraph. <4> Note that the `YearMonth` will not serialize because `m` did not configure the extensions module. <5> After `reset` it works properly once more. NOTE: The Console does expose the `:record` command which is inherited from the Groovy Shell. This command works well with local commands, but may record session outputs differently for `:remote` commands. If there is a need to use `:record` it may be best to manually create a `Cluster` object and issue commands that way so that they evaluate locally in the shell. === Interrupting Evaluations If there is some input that is taking too long to evaluate or to iterate through, use `ctrl+c` to attempt to interrupt that process. It is an "attempt" in the sense that the long running process is only informed of the interruption by the user and must respond to it (as with any call to `interrupt()` on a `Thread`). A `Traversal` will typically respond to such requests as do most commands, including `:remote` operations. [source,text]
gremlin> java.util.stream.IntStream.range(0, 1000).iterator() =⇒0 =⇒1 =⇒2 =⇒3 =⇒4 … =⇒348 =⇒349 =⇒350 =⇒351 =⇒352 Execution interrupted by ctrl+c gremlin>
[[console-preferences]] === Console Preferences Preferences are set with `:set name value`. Values can contain spaces when quoted. All preferences are reset by `:purge preferences` [width="100%",cols="3,^2,10",options="header"] |========================================================= |Preference |Type |Description |max-iteration | int | Controls the maximum number of results that the Console will display. Default: 100 results. |colors | bool | Enable ANSI color rendering. Default: true |warnings | bool | Enable display of remote execution warnings. Default: true |gremlin.color | colors | Color of the ASCII art gremlin on startup. |info.color | colors | Color of "info" type messages. |error.color | colors | Color of "error" type messages. |vertex.color | colors | Color of vertices results. |edge.color | colors | Color of edges in results. |string.color | colors | Colors of strings in results. |number.color | colors | Color of numbers in results. |T.color | colors| Color of Tokens in results. |input.prompt.color | colors | Color of the input prompt. |result.prompt.color | colors | Color of the result prompt. |input.prompt | string | Text of the input prompt. |result.prompt | string | Text of the result prompt. |result.indicator.null | string | Text of the void/no results indicator - setting to empty string (i.e. "" at the command line) will print no result line in these cases. |========================================================= Colors can contain a comma-separated combination of 1 each of foreground, background, and attribute. [width="100%",cols="3,^2,10",options="header"] |========================================================= |Foreground |Background |Attributes |black|bg_black|bold |blue|bg_blue|faint |cyan|bg_cyan|underline |green|bg_green| |magenta|bg_magenta| |red|bg_red| |white|bg_white| |yellow|bg_yellow| |========================================================= Example: [source,text]
:set gremlin.color bg_black,green,bold
=== Dependencies and Plugin Usage The Gremlin Console can dynamically load external code libraries and make them available to the user. Furthermore, those dependencies may contain Gremlin plugins which can expand the language, provide useful functions, etc. These important console features are managed by the `:install` and `:plugin` commands. The following Gremlin Console session demonstrates the basics of these features: [source,groovy]
gremlin> :plugin list <1> =⇒tinkerpop.server[active] =⇒tinkerpop.gephi =⇒tinkerpop.utilities[active] =⇒tinkerpop.sugar =⇒tinkerpop.tinkergraph[active] gremlin> :plugin use tinkerpop.sugar <2> =⇒tinkerpop.sugar activated gremlin> :install org.apache.tinkerpop neo4j-gremlin 3.8.0-SNAPSHOT <3> =⇒loaded: [org.apache.tinkerpop, neo4j-gremlin, 3.8.0-SNAPSHOT] gremlin> :plugin list <4> =⇒tinkerpop.server[active] =⇒tinkerpop.gephi =⇒tinkerpop.utilities[active] =⇒tinkerpop.sugar =⇒tinkerpop.tinkergraph[active] =⇒tinkerpop.neo4j gremlin> :plugin use tinkerpop.neo4j <5> =⇒tinkerpop.neo4j activated gremlin> :plugin list <6> =⇒tinkerpop.server[active] =⇒tinkerpop.gephi =⇒tinkerpop.sugar[active] =⇒tinkerpop.utilities[active] =⇒tinkerpop.neo4j[active] =⇒tinkerpop.tinkergraph[active]
<1> Show a list of "available" plugins. The list of "available" plugins is determined by the classes available on
the Console classpath. Plugins need to be "active" for their features to be available.
<2> To make a plugin "active" execute the `:plugin use` command and specify the name of the plugin to enable.
<3> Sometimes there are external dependencies that would be useful within the Console. To bring those in, execute
`:install` and specify the Maven coordinates for the dependency.
<4> Note that there is a "tinkerpop.neo4j" plugin available, but it is not yet "active".
<5> Again, to use the "tinkerpop.neo4j" plugin, it must be made "active" with `:plugin use`.
<6> Now when the plugin list is displayed, the "tinkerpop.neo4j" plugin is displayed as "active".
WARNING: Plugins must be compatible with the version of the Gremlin Console (or Gremlin Server) being used. Attempts
to use incompatible versions cannot be guaranteed to work. Moreover, be prepared for dependency conflicts in
third-party plugins that may only be resolved via manual jar removal from the `ext/{plugin}` directory.
TIP: It is possible to manage plugin activation and deactivation by manually editing the `ext/plugins.txt` file which
contains the class names of the "active" plugins. It is also possible to clear dependencies added by `:install` by
deleting them from the `ext` directory.
[[execution-mode]]
=== Execution Mode
For automated tasks and batch executions of Gremlin, it can be useful to execute Gremlin scripts in "execution" mode
from the command line. Consider the following file named `gremlin.groovy`:
[source,groovy]
graph = TinkerFactory.createModern() g = traversal().with(graph) g.V().each { println it }
This script creates the toy graph and then iterates through all its vertices printing each to the system out. To execute this script from the command line, `gremlin.sh` has the `-e` option used as follows: [source,bash]
$ bin/gremlin.sh -e gremlin.groovy v[1] v[2] v[3] v[4] v[5] v[6]
It is also possible to pass arguments to scripts. Any parameters following the file name specification are treated as arguments to the script. They are collected into a list and passed in as a variable called "args". The following Gremlin script is exactly like the previous one, but it makes use of the "args" option to filter the vertices printed to system out: [source,groovy]
graph = TinkerFactory.createModern() g = traversal().with(graph) g.V().has('name',args[0]).each { println it }
When executed from the command line a parameter can be supplied: [source,bash]
$ bin/gremlin.sh -e gremlin.groovy marko v[1] $ bin/gremlin.sh -e gremlin.groovy vadas v[2]
It is also possible to pass multiple scripts by specifying multiple `-e` options. The scripts will execute in the order in which they are specified. Note that only the arguments from the last script executed will be preserved in the console. Finally, if the arguments conflict with the reserved flags to which `gremlin.sh` responds, double quotes can be used to wrap all the arguments to the option: [source,bash]
$ bin/gremlin.sh -e "gremlin.groovy -e -i --color"
[[interactive-mode]] === Interactive Mode The Gremlin Console can be started in an "interactive" mode. Interactive mode is like <<execution-mode, execution mode>> but the console will not exit at the completion of the script, even if the script completes unsuccessfully. In such a case, it will simply stop processing on the line of the script that failed. In this way, the state of the console is such that a user could examine the state of things up to the point of failure, which might make the script easier to debug. In addition to debugging, interactive mode is a helpful way for users to initialize their console environment to avoid otherwise repetitive typing. For example, a user who spends a lot of time working with the TinkerPop "modern" graph might create a script called `init.groovy` like: [source,groovy]
graph = TinkerFactory.createModern() g = traversal().with(graph)
and then start Gremlin Console as follows: [source,text]
$ bin/gremlin.sh -i init.groovy
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> g.V()
==>v[1]
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
Note that the user can now reference `g` (and `graph` for that matter) at startup without having to directly type that variable initialization code into the console. As in execution mode, it is also possible to pass multiple scripts by specifying multiple `-i` options. See the <<execution-mode, Execution Mode Section>> for more information on the specifics of that capability. [[gremlin-console-docker-image]] === Docker Image The Gremlin Console can also be started as a link:https://hub.docker.com/r/tinkerpop/gremlin-console/[Docker image]: [source,text]
$ docker run -it tinkerpop/gremlin-console:3.8.0-SNAPSHOT Feb 25, 2018 3:47:24 PM java.util.prefs.FileSystemPreferences$1 run INFO: Created user preferences directory.
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin>
The Docker image offers the same options as the standalone Console. It can be used for example to execute scripts: [source,bash]
$ docker run -it tinkerpop/gremlin-console:3.8.0-SNAPSHOT -e gremlin.groovy v[1] v[2] v[3] v[4] v[5] v[6]
[[gremlin-server]] == Gremlin Server image:gremlin-server.png[width=400,float=right] Gremlin Server provides a way to remotely execute Gremlin against one or more `Graph` instances hosted within it. The benefits of using Gremlin Server include: * Allows any Gremlin Structure-enabled graph (i.e. implements the `Graph` API on the JVM) to exist as a standalone server, which in turn enables the ability for multiple clients to communicate with the same graph database. * Enables execution of ad hoc queries through remotely submitted Gremlin. * Provides a method for non-JVM languages which may not have a Gremlin Traversal Machine (e.g. Python, Javascript, Go, etc.) to communicate with the TinkerPop stack on the JVM. * Exposes numerous methods for extension and customization to include serialization options, remote commands, etc. NOTE: Gremlin Server is the replacement for link:https://github.com/tinkerpop/rexster[Rexster]. NOTE: Please see the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/[Provider Documentation] for information on how to develop a driver for Gremlin Server. By default, communication with Gremlin Server occurs over link:http://en.wikipedia.org/wiki/WebSocket[WebSocket] and exposes a custom sub-protocol for interacting with the server. WARNING: Gremlin Server allows for the execution of remotely submitted "scripts" (i.e. arbitrary code sent by a client to the server). Developers should consider the security implications involved in running Gremlin Server without the appropriate precautions. Please review the <<security,Security Section>> and more specifically, the <<script-execution,Script Execution Section>> for more information. [[starting-gremlin-server]] === Starting Gremlin Server Gremlin Server comes packaged with a script called `bin/gremlin-server.sh` to get it started (use `gremlin-server.bat` on Windows): [source,text]
$ bin/gremlin-server.sh conf/gremlin-server-modern.yaml [INFO] GremlinServer \,,,/ (o o) -----oOOo-(3)-oOOo-----
[INFO] GremlinServer - Configuring Gremlin Server from conf/gremlin-server-modern.yaml [INFO] MetricManager - Configured Metrics Slf4jReporter configured with interval=180000ms and loggerName=org.apache.tinkerpop.gremlin.server.Settings$Slf4jReporterMetrics [INFO] DefaultGraphManager - Graph [graph] was successfully configured via [conf/tinkergraph-empty.properties]. [INFO] ServerGremlinExecutor - Initialized Gremlin thread pool. Threads in pool named with pattern gremlin-* [INFO] ServerGremlinExecutor - Initialized GremlinExecutor and preparing GremlinScriptEngines instances. [INFO] ServerGremlinExecutor - Initialized gremlin-groovy GremlinScriptEngine and registered metrics
[INFO] OpLoader - Adding the standard OpProcessor. [INFO] OpLoader - Adding the session OpProcessor. [INFO] OpLoader - Adding the traversal OpProcessor. [INFO] GremlinServer - Executing start up LifeCycleHook [INFO] Logger$info - Loading 'modern' graph data. [INFO] GremlinServer - idleConnectionTimeout was set to 0 which resolves to 0 seconds when configuring this value - this feature will be disabled [INFO] GremlinServer - keepAliveInterval was set to 0 which resolves to 0 seconds when configuring this value - this feature will be disabled [INFO] AbstractChannelizer - Configured application/vnd.gremlin-v3.0+json with org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3 [INFO] AbstractChannelizer - Configured application/json with org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3 [INFO] AbstractChannelizer - Configured application/vnd.graphbinary-v1.0 with org.apache.tinkerpop.gremlin.util.ser.GraphBinaryMessageSerializerV1 [INFO] AbstractChannelizer - Configured application/vnd.graphbinary-v1.0-stringd with org.apache.tinkerpop.gremlin.util.ser.GraphBinaryMessageSerializerV1 [INFO] GremlinServer$1 - Gremlin Server configured with worker thread pool of 1, gremlin pool of 4 and boss thread pool of 1. [INFO] GremlinServer$1 - Channel started at port 8182.
Gremlin Server is configured by the provided link:http://www.yaml.org/[YAML] file `conf/gremlin-server-modern.yaml`. That file tells Gremlin Server many things such as: * The host and port to serve on * Thread pool sizes * Where to report metrics gathered by the server * The serializers to make available * The Gremlin `ScriptEngine` instances to expose and external dependencies to inject into them * `Graph` instances to expose The log messages that printed above show a number of things, but most importantly, there is a `Graph` instance named `graph` that is exposed in Gremlin Server. This graph is an in-memory TinkerGraph and was empty at the start of the server. An initialization script at `scripts/generate-modern.groovy` was executed during startup. Its contents are as follows: [source,groovy]
/* */
def globals = [:]
globals << [hook : [ onStartUp: { ctx → ctx.logger.info("Loading 'modern' graph data.") org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerFactory.generateModern(graph) } ] as LifeCycleHook]
globals << [g : traversal().withEmbedded(graph)]
The script above initializes a `Map` and assigns two key/values to it. The first, assigned to "hook", defines a
`LifeCycleHook` for Gremlin Server. The "hook" provides a way to tie script code into the Gremlin Server startup and
shutdown sequences. The `LifeCycleHook` has two methods that can be implemented: `onStartUp` and `onShutDown`.
These events are called once at Gremlin Server start and once at Gremlin Server stop. This is an important point
because code outside of the "hook" is executed for each `ScriptEngine` creation (multiple may be created when
"sessions" are enabled) and therefore the `LifeCycleHook` provides a way to ensure that a script is only executed a
single time. In this case, the startup hook loads the "modern" graph into the empty TinkerGraph instance, preparing
it for use. The second key/value pair assigned to the `Map`, named "g", defines a `TraversalSource` from the `Graph`
bound to the "graph" variable in the YAML configuration file. This variable `g`, as well as any other variable
assigned to the `Map`, will be made available as variables for future remote script executions. In more general
terms, any key/value pairs assigned to a `Map` returned from the initialization script will become variables that
are global to all requests. In addition, any functions that are defined will be cached for future use.
WARNING: Transactions on graphs in initialization scripts are not closed automatically after the script finishes
executing. It is up to the script to properly commit or rollback transactions in the script itself.
[[connecting-via-drivers]]
=== Connecting via Drivers
image:rexster-connect.png[width=180,float=right] TinkerPop offers client-side drivers for the Gremlin Server websocket
sub-protocol in a variety of languages:
* <<gremlin-dotnet,C#>>
* <<gremlin-go,Go>>
* <<gremlin-java,Java>>
* <<gremlin-javascript,Javascript>>
* <<gremlin-python,Python>>
These drivers provide methods to send Gremlin based requests and get back traversal results as a response. The requests
may be script-based or bytecode-based. As discussed earlier in the <<connecting-gremlin-server,introduction>> the
recommendation is to use bytecode-based requests. The difference between sending scripts and sending bytecode are
demonstrated below in some basic examples:
++++
<section class="tabs tabs-6">
<input id="tab-1761594617-5" type="radio" name="radio-set-1761594617-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-5" class="tab-label-1">java</label>
<input id="tab-1761594617-6" type="radio" name="radio-set-1761594617-5" class="tab-selector-2" />
<label for="tab-1761594617-6" class="tab-label-2">groovy</label>
<input id="tab-1761594617-7" type="radio" name="radio-set-1761594617-5" class="tab-selector-3" />
<label for="tab-1761594617-7" class="tab-label-3">csharp</label>
<input id="tab-1761594617-8" type="radio" name="radio-set-1761594617-5" class="tab-selector-4" />
<label for="tab-1761594617-8" class="tab-label-4">javascript</label>
<input id="tab-1761594617-9" type="radio" name="radio-set-1761594617-5" class="tab-selector-5" />
<label for="tab-1761594617-9" class="tab-label-5">python</label>
<input id="tab-1761594617-10" type="radio" name="radio-set-1761594617-5" class="tab-selector-6" />
<label for="tab-1761594617-10" class="tab-label-6">go</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect(); Map<String,Object> params = new HashMap<>(); params.put("name","marko"); List<Result> list = client.submit("g.V().has('person','name',name).out('knows')", params).all().get();
GraphTraversalSource g = traversal().with(DriverRemoteConnection.using("localhost",8182,"g")); List<Vertex> list = g.V().has("person","name","marko").out("knows").toList();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
def cluster = Cluster.open() def client = cluster.connect() def list = client.submit("g.V().has('person','name',name).out('knows')", [name: "marko"]).all().get();
def g = traversal().with(DriverRemoteConnection.using("localhost",8182,"g")) def list = g.V().has('person','name','marko').out('knows').toList()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,csharp]
var gremlinServer = new GremlinServer("localhost", 8182); using (var gremlinClient = new GremlinClient(gremlinServer)) { var bindings = new Dictionary<string, object> { {"name", "marko"} };
var response =
await gremlinClient.SubmitWithSingleResultAsync<object>("g.V().has('person','name',name).out('knows')",
bindings);
}
using (var gremlinClient = new GremlinClient(new GremlinServer("localhost", 8182))) { var g = Traversal().With(new DriverRemoteConnection(gremlinClient)); var list = g.V().Has("person", "name", "marko").Out("knows").ToList(); }
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-4">
++++
[source,javascript]
const client = new Client('ws://localhost:45940/gremlin', { traversalSource: "g" }); const conn = client.open(); const list = conn.submit("g.V().has('person','name',name).out('knows')",{name: 'marko'}).then(function (response) { … });
const g = gtraversal().with(new DriverRemoteConnection('ws://localhost:8182/gremlin')); const list = g.V().has("person","name","marko").out("knows").toList();
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-5">
++++
[source,python]
# script client = Client('ws://localhost:8182/gremlin', 'g') list = client.submit("g.V().has('person','name',name).out('knows')",{'name': 'marko'}).all()
# bytecode g = traversal().with(DriverRemoteConnection('ws://localhost:8182/gremlin','g')) list = g.V().has("person","name","marko").out("knows").toList()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-6">
++++
[source,go]
client, err := NewClient("ws://localhost:8182/gremlin") resultSet, err := client.SubmitWithOptions("g.V().has('person','name',name).out('knows')", new(RequestOptionsBuilder).AddBinding("name", "marko").Create()) result, err := resultSet.All()
remote, err := NewDriverRemoteConnection("ws://localhost:8182/gremlin") g := Traversal_().With(remote) list, err := g.V().Has("person", "name", "marko").Out("knows").ToList()
++++
</div>
</div>
</section>
++++
The advantage of bytecode over scripts should be apparent from the above examples. Scripts are just strings that are
embedded in code (in the above examples, the strings are Groovy-based) whereas bytecode based requests are themselves
code written in the native language of use. Obviously, the advantage of the Gremlin being actual code is that there
are checks (e.g. compile-time, auto-complete and other IDE support, language level checks, etc.) that help validate the
Gremlin during the development process.
When sending requests to the server, it is important to remember that the results of the request be something that is
serializable by the server and driver. If the server cannot serialize the result or if what the server serializes is not
recognized by the serializer used by the driver, there will be an error. The most common cases for seeing serialization
problems include:
* Connecting to a graph that requires custom serializers, such as the ones JanusGraph provides for its relation
identifier. Always be take time to get to know the graph database that's been chosen to determine if there are customer
serializers that need to be registered to the server or the driver.
* Driver versions that don't match server versions can sometimes create scenarios where serialization failures will
present themselves. TinkerPop typically does the most testing on drivers and servers of the same version and therefore
has the greatest confidence where those versions match. When possible, try to align the driver version with the server
version.
* Groovy-scripts can return anything since it has full access to the JVM. While a simple non-Gremlin traversal script
like "1+1" simply returns a number which is perfectly serializable, it is just as easy to send a script like
"graph.openManagement()" which is a JanusGraph API and returns an object that is not, returning an error.
TinkerPop makes an effort to ensure a high-level of consistency among the drivers and their features, but there are
differences in capabilities and features as they are each developed independently. The Java driver was the first and
is therefore the most advanced. Please see the related documentation for the driver of interest for more information
and details in the <<gremlin-drivers-variants,Gremlin Drivers and Variants>> Section of this documentation.
[[connecting-via-console]]
=== Connecting via Console
With Gremlin Server running it is now possible to issue some scripts to it for processing. Start Gremlin Console as
follows:
[source,text]
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
gremlin>
The console has the notion of a "remote", which represents a place a script will be sent from the console to be
evaluated elsewhere in some other context (e.g. Gremlin Server, Hadoop, etc.). To create a remote in the console,
do the following:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-11" type="radio" name="radio-set-1761594617-11" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-11" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-12" type="radio" name="radio-set-1761594617-11" class="tab-selector-2" />
<label for="tab-1761594617-12" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote.yaml =⇒Configured localhost/127.0.0.1:8182
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote connect tinkerpop.server conf/remote.yaml
++++
</div>
</div>
</section>
++++
The `:remote` command shown above displays the current status of the remote connection. This command can also be
used to configure a new connection and change other related settings. To actually send a script to the server a
different command is required:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-13" type="radio" name="radio-set-1761594617-13" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-13" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-14" type="radio" name="radio-set-1761594617-13" class="tab-selector-2" />
<label for="tab-1761594617-14" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :> g.V().values('name') =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter gremlin> :> g.V().has('name','marko').out('created').values('name') =⇒lop gremlin> :> g.E().label().groupCount() =⇒{created=4, knows=2} gremlin> result =⇒result{object={created=4, knows=2} class=java.lang.String} gremlin> :remote close =⇒Removed - Gremlin Server - [localhost/127.0.0.1:8182]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:> g.V().values('name') :> g.V().has('name','marko').out('created').values('name') :> g.E().label().groupCount() result :remote close
++++
</div>
</div>
</section>
++++
The `:>` command, which is a shorthand for `:submit`, sends the script to the server to execute there. Results are
wrapped in an `Result` object which is a just a holder for each individual result. The `class` shows the data type
for the containing value. Note that the last script sent was supposed to return a `Map`, but its `class` is
`java.lang.String`. By default, the connection is configured to only return text results. In other words,
Gremlin Server is using `toString` to serialize all results back to the console. This enables virtually any
object on the server to be returned to the console, but it doesn't allow the opportunity to work with this data
in any way in the console itself. A different configuration of the `:remote` is required to get the results back
as "objects":
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-15" type="radio" name="radio-set-1761594617-15" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-15" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-16" type="radio" name="radio-set-1761594617-15" class="tab-selector-2" />
<label for="tab-1761594617-16" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote-objects.yaml //// <1> =⇒Configured localhost/127.0.0.1:8182 gremlin> :remote list //// <2> =⇒*0 - Gremlin Server - [localhost/127.0.0.1:8182] gremlin> :> g.E().label().groupCount() //// <3> =⇒[created:4,knows:2] gremlin> m = result[0].object //// <4> =⇒created=4 =⇒knows=2 gremlin> m.sort {it.value} =⇒knows=2 =⇒created=4 gremlin> script = """ g.V().hasLabel('person'). out('knows'). out('created'). group(). by('name') """ =⇒ g.V().hasLabel('person'). out('knows'). out('created'). group(). by('name')
gremlin> :> @script //// <5> =⇒[ripple:[v[5]],lop:[v[3]]] gremlin> :remote close =⇒Removed - Gremlin Server - [localhost/127.0.0.1:8182]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote connect tinkerpop.server conf/remote-objects.yaml //// <1> :remote list //// <2> :> g.E().label().groupCount() //// <3> m = result[0].object //// <4> m.sort {it.value} script = """ g.V().hasLabel('person'). out('knows'). out('created'). group(). by('name') """ :> @script //// <5> :remote close
++++
</div>
</div>
</section>
++++
<1> This configuration file specifies that results should be deserialized back into an `Object` in the console with
the caveat being that the server and console both know how to serialize and deserialize the result to be returned.
<2> There are now two configured remote connections. The one marked by an asterisk is the one that was just created
and denotes the current one that `:submit` will react to.
<3> When the script is executed again, the `class` is no longer shown to be a `java.lang.String`. It is instead a `java.util.HashMap`.
<4> The last result of a remote script is always stored in the reserved variable `result`, which allows access to
the `Result` and by virtue of that, the `Map` itself.
<5> If the submission requires multiple-lines to express, then a multi-line string can be created. The `:>` command
realizes that the user is referencing a variable via `@` and submits the string script.
TIP: In Groovy, `""" text """` is a convenient way to create a multi-line string and works well in concert with
`:> @variable`. Note that this model of submitting a string variable works for all `:>` based plugins, not just Gremlin Server.
WARNING: Not all values that can be returned from a Gremlin script end up being serializable. For example,
submitting `:> graph` will return a `Graph` instance and in most cases those are not serializable by Gremlin Server
and will return a serialization error. It should be noted that `TinkerGraph`, as a convenience for shipping around
small sub-graphs, is serializable from Gremlin Server.
The alternative syntax to connecting allows for the `Cluster` to be user constructed directly in the console as
opposed to simply providing a static YAML file.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-17" type="radio" name="radio-set-1761594617-17" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-17" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-18" type="radio" name="radio-set-1761594617-17" class="tab-selector-2" />
<label for="tab-1761594617-18" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> cluster = Cluster.open() =⇒localhost/127.0.0.1:8182 gremlin> :remote connect tinkerpop.server cluster =⇒Configured localhost/127.0.0.1:8182
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
cluster = Cluster.open() :remote connect tinkerpop.server cluster
++++
</div>
</div>
</section>
++++
The Gremlin Server `:remote config` command for the driver has the following configuration options:
[width="100%",cols="3,10a",options="header"]
|=========================================================
|Command |Description
|alias |
[width="100%",cols="3,10",options="header"]
!=========================================================
!Option !Description
! _pairs_ !A set of key/value alias/binding pairs to apply to requests.
!`reset` !Clears any aliases that were supplied in previous configurations of the remote.
!`show` !Shows the current set of aliases which is returned as a `Map`
!=========================================================
|timeout |Specifies the length of time in milliseconds the Console will wait for a response from the server. Specify
"none" to have no timeout. By default, this setting uses "none".
|=========================================================
[[console-aliases]]
==== Aliases
The `alias` configuration command for the Gremlin Server `:remote` can be useful in situations where there are
multiple `Graph` or `TraversalSource` instances on the server, as it becomes possible to rename them from the client
for purposes of execution within the context of a script. Therefore, it becomes possible to submit commands this way:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-19" type="radio" name="radio-set-1761594617-19" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-19" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-20" type="radio" name="radio-set-1761594617-19" class="tab-selector-2" />
<label for="tab-1761594617-20" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote-objects.yaml =⇒Configured localhost/127.0.0.1:8182 gremlin> :remote config alias x g =⇒x=g gremlin> :> x.E().label().groupCount() =⇒[created:4,knows:2] gremlin> :remote close =⇒Removed - Gremlin Server - [localhost/127.0.0.1:8182]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote connect tinkerpop.server conf/remote-objects.yaml :remote config alias x g :> x.E().label().groupCount() :remote close
++++
</div>
</div>
</section>
++++
[[console-sessions]]
==== Sessions
A `:remote` created in the following fashion will be "sessionless", meaning each script issued to the server with
`:>` will be encased in a transaction and no state will be maintained from one request to the next.
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote-objects.yaml =⇒Configured localhost/127.0.0.1:8182
In other words, the transaction will be automatically committed (or rolledback on error) and any variables declared
in that script will be forgotten for the next request. See the section on <<sessions, "Considering Sessions">>
for more information on that topic.
To enable the remote to connect with a session the `connect` argument takes another argument as follows:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-21" type="radio" name="radio-set-1761594617-21" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-21" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-22" type="radio" name="radio-set-1761594617-21" class="tab-selector-2" />
<label for="tab-1761594617-22" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote.yaml session =⇒Configured localhost/127.0.0.1:8182-[d5f9f531-db9f-4aa7-aea5-02c90bb20dbd] gremlin> :> x = 1 =⇒1 gremlin> :> y = 2 =⇒2 gremlin> :> x + y =⇒3 gremlin> :remote close =⇒Removed - Gremlin Server - [localhost/127.0.0.1:8182]-[d5f9f531-db9f-4aa7-aea5-02c90bb20dbd]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote connect tinkerpop.server conf/remote.yaml session :> x = 1 :> y = 2 :> x + y :remote close
++++
</div>
</div>
</section>
++++
With the above command a session gets created with a random UUID for a session identifier. It is also possible to
assign a custom session identifier by adding it as the last argument to `:remote` command above. There is also the
option to replace "session" with "session-managed" to create a session that will auto-manage transactions (i.e. each
request will occur within the bounds of a transaction). In this way, the state of bound variables between requests are
maintained, but the need to manually managed the transactional scope of the graph is no longer required.
[[console-remote-console]]
==== Remote Console
Previous examples have shown usage of the `:>` command to send scripts to Gremlin Server. The Gremlin Console also
supports an additional method for doing this which can be more convenient when the intention is to exclusively
work with a remote connection to the server.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-23" type="radio" name="radio-set-1761594617-23" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-23" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-24" type="radio" name="radio-set-1761594617-23" class="tab-selector-2" />
<label for="tab-1761594617-24" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote.yaml session =⇒Configured localhost/127.0.0.1:8182-[64534132-475e-407b-ad91-975c60a7cfc6] gremlin> :remote console =⇒All scripts will now be sent to Gremlin Server - [localhost/127.0.0.1:8182]-[64534132-475e-407b-ad91-975c60a7cfc6] - type ':remote console' to return to local mode gremlin> x = 1 =⇒1 gremlin> y = 2 =⇒2 gremlin> x + y =⇒3 gremlin> :remote console =⇒All scripts will now be evaluated locally - type ':remote console' to return to remote mode for Gremlin Server - [localhost/127.0.0.1:8182]-[64534132-475e-407b-ad91-975c60a7cfc6] gremlin> :remote close =⇒Removed - Gremlin Server - [localhost/127.0.0.1:8182]-[64534132-475e-407b-ad91-975c60a7cfc6]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote connect tinkerpop.server conf/remote.yaml session :remote console x = 1 y = 2 x + y :remote console :remote close
++++
</div>
</div>
</section>
++++
In the above example, the `:remote console` command is executed. It places the console in a state where the `:>` is
no longer required. Each script line is actually automatically submitted to Gremlin Server for evaluation. The
variables `x` and `y` that were defined actually don't exist locally - they only exist on the server! In this sense,
putting the console in this mode is basically like creating a window to a session on Gremlin Server.
TIP: When using `:remote console` there is not much point to using a configuration that uses a serializer that returns
actual data. In other words, using a configuration like the one inside of `conf/remote-objects.yaml` isn't typically
useful as in this mode the result will only ever be displayed but not used. Using a serializer configuration like
the one in `conf/remote.yaml` should perform better.
NOTE: Console commands, those that begin with a colon (e.g. `:x`, `:remote`) do not execute remotely when in this mode.
They are all still evaluated locally.
[[connecting-via-http]]
=== Connecting via HTTP
image:gremlin-rexster.png[width=225,float=left] While the default behavior for Gremlin Server is to provide a
WebSocket-based connection, it can also be configured to support plain HTTP web service.
The HTTP endpoint provides for a communication protocol familiar to most developers, with a wide support of
programming languages, tools and libraries for accessing it. As a result, HTTP provides a fast way to get started
with Gremlin Server. It also may represent an easier upgrade path from link:https://github.com/tinkerpop/rexster[Rexster]
as the API for the endpoint is very similar to Rexster's link:https://github.com/tinkerpop/rexster/wiki/Gremlin-Extension[Gremlin Extension].
IMPORTANT: TinkerPop provides and supports this HTTP endpoint as a convenience and for legacy reasons, but users should
prefer the recommended approach of bytcode based requests as described in <<connecting-gremlin,Connecting Gremlin>>
section.
Gremlin Server provides for a single HTTP endpoint - a Gremlin evaluator - which allows the submission of a Gremlin
script as a request. For each request, it returns a response containing the serialized results of that script.
To enable this endpoint, Gremlin Server needs to be configured with the `HttpChannelizer`, which replaces the default.
The `WsAndHttpChannelizer` may also be configured to enable both WebSockets and the REST endpoint in the configuration
file:
[source,yaml]
channelizer: org.apache.tinkerpop.gremlin.server.channel.HttpChannelizer
[source,yaml]
channelizer: org.apache.tinkerpop.gremlin.server.channel.WsAndHttpChannelizer
The `HttpChannelizer` is already configured in the `gremlin-server-rest-modern.yaml` file that is packaged with the Gremlin
Server distribution. To utilize it, start Gremlin Server as follows:
[source,text]
bin/gremlin-server.sh conf/gremlin-server-rest-modern.yaml
Once the server has started, issue a request. Here's an example with link:http://curl.haxx.se/[cURL]:
[source,text]
$ curl "http://localhost:8182?gremlin=100-1"
which returns:
[source,js]
{
"result":{"data":99,"meta":{}},
"requestId":"0581cdba-b152-45c4-80fa-3d36a6eecf1c",
"status":{"code":200,"attributes":{},"message":""}
}
The above example showed a `GET` operation, but the preferred method for this endpoint is `POST`:
[source,text]
curl -X POST -d "{\"gremlin\":\"100-1\"}" "http://localhost:8182"
which returns:
[source,js]
{
"result":{"data":99,"meta":{}},
"requestId":"ef2fe16c-441d-4e13-9ddb-3c7b5dfb10ba",
"status":{"code":200,"attributes":{},"message":""}
}
It is also preferred that Gremlin scripts be parameterized when possible via `bindings`:
[source,text]
curl -X POST -d "{\"gremlin\":\"100-x\", \"bindings\":{\"x\":1}}" "http://localhost:8182"
The `bindings` argument is a `Map` of variables where the keys become available as variables in the Gremlin script.
Note that parameterization of requests is critical to performance, as repeated script compilation can be avoided on
each request.
NOTE: It is possible to pass bindings via `GET` based requests. Query string arguments prefixed with "bindings." will
be treated as parameters, where that prefix will be removed and the value following the period will become the
parameter name. In other words, `bindings.x` will create a parameter named "x" that can be referenced in the submitted
Gremlin script. The caveat is that these arguments will always be treated as `String` values. To ensure that data
types are preserved or to pass complex objects such as lists or maps, use `POST` which will at least support the
allowed JSON data types.
Passing the `Accept` header with a valid MIME type will trigger the server to return the result in a particular format.
Note that in addition to the formats available given the server's `serializers` configuration, there is also a basic
`text/plain` format which produces a text representation of results similar to the Gremlin Console:
[source,text]
$ curl -H "Accept:text/plain" -X POST -d "{\"gremlin\":\"g.V()\"}" "http://localhost:8182" =⇒v[1] =⇒v[2] =⇒v[3] =⇒v[4] =⇒v[5] =⇒v[6]
Finally, as Gremlin Server can host multiple `ScriptEngine` instances (e.g. `gremlin-groovy`, `nashorn`), it is
possible to define the language to utilize to process the request:
[source,text]
curl -X POST -d "{\"gremlin\":\"100-x\", \"language\":\"gremlin-groovy\", \"bindings\":{\"x\":1}}" "http://localhost:8182"
By default this value is set to `gremlin-groovy`. If using a `GET` operation, this value can be set as a query
string argument with by setting the `language` key.
WARNING: Consider the size of the result of a submitted script being returned from the HTTP endpoint. A script
that iterates thousands of results will serialize each of those in memory into a single JSON result set. It is
quite possible that such a script will generate `OutOfMemoryError` exceptions on the server. Consider the default
WebSocket configuration, which supports streaming, if that type of use case is required.
[[server-configuring]]
=== Configuring
The `gremlin-server.sh` file serves multiple purposes. It can be used to "install" dependencies to the Gremlin
Server path. For example, to be able to configure and use other `Graph` implementations, the dependencies must be
made available to Gremlin Server. To do this, use the `install` switch and supply the Maven coordinates for the
dependency to "install". For example, to use Neo4j in Gremlin Server:
[source,text]
bin/gremlin-server.sh install org.apache.tinkerpop neo4j-gremlin 3.8.0-SNAPSHOT
This command will "grab" the appropriate dependencies and copy them to the `ext` directory of Gremlin Server, which will then allow them to be "used" the next time the server is started. To uninstall dependencies, simply delete them from the `ext` directory. `bin/gremlin-server.sh` has several other options. [width="100%",cols="3,10",options="header"] |========================================================= |Parameter|Description |start|Start the server in the background. |stop|Shutdown the server. |restart|Shutdown a running server then start it again. |status|Check if the server is running. |console|Start the server in the foreground. Use ^C to kill it. |install <group> <artifact> <version>| Install dependencies into the server. "-i" exists for backwards compatibility but is deprecated. |<conf file>| Start the server in the foreground using the provided YAML config file. |========================================================= The `bin/gremlin-server.sh` script can be customized with environment variables in `bin/gremlin-server.conf`. [width="100%",cols="3,10",options="header"] |========================================================= |Variable |Description |DEBUG| Enable debugging of the startup script |GREMLIN_HOME| The Gremlin Server install directory. Use this if the script has trouble finding itself. |GREMLIN_YAML| The default server YAML file (conf/gremlin-server.yaml) |LOG_DIR| Location of gremlin.log where stdout/stderr are captured (logs/) |PID_DIR| Location of gremlin.pid |RUNAS| User to run the server as |JAVA_HOME| Java install location. Will use $JAVA_HOME/bin/java |JAVA_OPTIONS| Options passed to the JVM |========================================================= As mentioned earlier, Gremlin Server is configured though a YAML file. By default, Gremlin Server will look for a file called `conf/gremlin-server.yaml` to configure itself on startup. To override this default, set GREMLIN_YAML in `bin/gremlin-server.conf` or supply the file to use to `bin/gremlin-server.sh` as in: [source,text]
bin/gremlin-server.sh conf/gremlin-server-min.yaml
WARNING: On Windows, gremlin-server.bat will always start in the foreground. When no parameter is provided, it will start with the default `conf/gremlin-server.yaml` file. NOTE: The following configuration options may reference the `UnifiedChannelizer`. It was deprecated in 3.8.0 and will be removed in a future version. The following table describes the various YAML configuration options that Gremlin Server expects: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |authentication.authenticator |The fully qualified classname of an `Authenticator` implementation to use. If this setting is not present, then authentication is effectively disabled. |`AllowAllAuthenticator` |authentication.authenticationHandler | The fully qualified classname of an `AbstractAuthenticationHandler` implementation to use. If this setting is not present, but the `authentication.authenticator` is, it will use that authenticator with the default `AbstractAuthenticationHandler` implementation for the specified `Channelizer` |_none_ |authentication.config |A `Map` of configuration settings to be passed to the `Authenticator` when it is constructed. The settings available are dependent on the implementation. |_none_ |authorization.authorizer |The fully qualified classname of an `Authorizer` implementation to use. |_none_ |authorization.config |A `Map` of configuration settings to be passed to the `Authorizer` when it is constructed. The settings available are dependent on the implementation. |_none_ |channelizer |The fully qualified classname of the `Channelizer` implementation to use. A `Channelizer` is a "channel initializer" which Gremlin Server uses to define the type of processing pipeline to use. By allowing different `Channelizer` implementations, Gremlin Server can support different communication protocols (e.g. WebSocket). |`WebSocketChannelizer` |enableAuditLog |The `AuthenticationHandler`, `AuthorizationHandler` and processors can issue audit logging messages with the authenticated user, remote socket address and requests with a gremlin query. For privacy reasons, the default value of this setting is false. The audit logging messages are logged at the INFO level via the `audit.org.apache.tinkerpop.gremlin.server` logger, which can be configured using the `logback.xml` file. |_false_ |graphManager |The fully qualified classname of the `GraphManager` implementation to use. A `GraphManager` is a class that adheres to the TinkerPop `GraphManager` interface, allowing custom implementations for storing and managing graph references, as well as defining custom methods to open and close graphs instantiations. To prevent Gremlin Server from starting when all graphs fails, the `CheckedGraphManager` can be used.|`DefaultGraphManager` |graphs |A `Map` of `Graph` configuration files where the key of the `Map` becomes the name to which the `Graph` will be bound and the value is the file name of a `Graph` configuration file. |_none_ |gremlinPool |The number of "Gremlin" threads available to execute actual scripts in a `ScriptEngine`. This pool represents the workers available to handle blocking operations in Gremlin Server. When set to `0`, Gremlin Server will use the value provided by `Runtime.availableProcessors()`. |0 |host |The name of the host to bind the server to. |localhost |idleConnectionTimeout |Time in milliseconds that the server will allow a channel to not receive requests from a client before it automatically closes. If enabled, the value provided should typically exceed the amount of time given to `keepAliveInterval`. Note that while this value is to be provided as milliseconds it will resolve to second precision. Set this value to `0` to disable this feature. |0 |keepAliveInterval |Time in milliseconds that the server will allow a channel to not send responses to a client before it sends a "ping" to see if it is still present. If it is present, the client should respond with a "pong" which will thus reset the `idleConnectionTimeout` and keep the channel open. If enabled, this number should be smaller than the value provided to the `idleConnectionTimeout`. Note that while this value is to be provided as milliseconds it will resolve to second precision. Set this value to `0` to disable this feature. |0 |maxAccumulationBufferComponents |Maximum number of request components that can be aggregated for a message. |1024 |maxChunkSize |The maximum length of the content or each chunk. If the content length exceeds this value, the transfer encoding of the decoded request will be converted to 'chunked' and the content will be split into multiple `HttpContent` objects. If the transfer encoding of the HTTP request is 'chunked' already, each chunk will be split into smaller chunks if the length of the chunk exceeds this value. |8192 |maxContentLength |The maximum length of the aggregated content for a message. Works in concert with `maxChunkSize` where chunked requests are accumulated back into a single message. A request exceeding this size will return a `413 - Request Entity Too Large` status code. A response exceeding this size will raise an internal exception. |65536 |maxHeaderSize |The maximum length of all headers. |8192 |maxInitialLineLength |The maximum length of the initial line (e.g. "GET / HTTP/1.0") processed in a request, which essentially controls the maximum length of the submitted URI. |4096 |maxParameters |The maximum number of parameters that can be passed on a request. Larger numbers may impact performance for scripts. This configuration only applies to the `UnifiedChannelizer`. |16 |maxSessionTaskQueueSize |The maximum size that an individual session can queue requests before starting to reject them. This configuration only applies to the `UnifiedChannelizer`. |4096 |maxWorkQueueSize |The maximum size the general processing queue can grow before the `gremlinPool` starts to reject requests. |8192 |metrics.consoleReporter.enabled |Turns on console reporting of metrics. |false |metrics.consoleReporter.interval |Time in milliseconds between reports of metrics to console. |180000 |metrics.csvReporter.enabled |Turns on CSV reporting of metrics. |false |metrics.csvReporter.fileName |The file to write metrics to. |_none_ |metrics.csvReporter.interval |Time in milliseconds between reports of metrics to file. |180000 |metrics.gangliaReporter.addressingMode |Set to `MULTICAST` or `UNICAST`. |_none_ |metrics.gangliaReporter.enabled |Turns on Ganglia reporting of metrics. Additional link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/reference/#metrics[setup] is required. |false |metrics.gangliaReporter.host |Define the Ganglia host to report Metrics to. |localhost |metrics.gangliaReporter.interval |Time in milliseconds between reports of metrics for Ganglia. |180000 |metrics.gangliaReporter.port |Define the Ganglia port to report Metrics to. |8649 |metrics.graphiteReporter.enabled |Turns on Graphite reporting of metrics. Additional link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/reference/#metrics[setup] is required. |false |metrics.graphiteReporter.host |Define the Graphite host to report Metrics to. |localhost |metrics.graphiteReporter.interval |Time in milliseconds between reports of metrics for Graphite. |180000 |metrics.graphiteReporter.port |Define the Graphite port to report Metrics to. |2003 |metrics.graphiteReporter.prefix |Define a "prefix" to append to metrics keys reported to Graphite. |_none_ |metrics.jmxReporter.enabled |Turns on JMX reporting of metrics. |false |metrics.slf4jReporter.enabled |Turns on SLF4j reporting of metrics. |false |metrics.slf4jReporter.interval |Time in milliseconds between reports of metrics to SLF4j. |180000 |port |The port to bind the server to. |8182 |processors |A `List` of `Map` settings, where each `Map` represents a `OpProcessor` implementation to use along with its configuration. |_none_ |processors[X].className |The full class name of the `OpProcessor` implementation. |_none_ |processors[X].config |A `Map` containing `OpProcessor` specific configurations. |_none_ |resultIterationBatchSize |Defines the size in which the result of a request is "batched" back to the client. In other words, if set to `1`, then a result that had ten items in it would get each result sent back individually. If set to `2` the same ten results would come back in five batches of two each. |64 |scriptEngines |A `Map` of `ScriptEngine` implementations to expose through Gremlin Server, where the key is the name given by the `ScriptEngine` implementation. The key must match the name exactly for the `ScriptEngine` to be constructed. The value paired with this key is itself a `Map` of configuration for that `ScriptEngine`. If this value is not set, it will default to "gremlin-groovy". |_gremlin-groovy_ |scriptEngines.<name>.imports |A comma separated list of classes/packages to make available to the `ScriptEngine`. |_none_ |scriptEngines.<name>.staticImports |A comma separated list of "static" imports to make available to the `ScriptEngine`. |_none_ |scriptEngines.<name>.scripts |A comma separated list of script files to execute on `ScriptEngine` initialization. `Graph` and `TraversalSource` instance references produced from scripts will be stored globally in Gremlin Server, therefore it is possible to use initialization scripts to add Traversal Strategies or create entirely new `Graph` instances all together. Instantiating a `LifeCycleHook` in a script provides a way to execute scripts when Gremlin Server starts and stops.|_none_ |scriptEngines.<name>.config |A `Map` of configuration settings for the `ScriptEngine`. These settings are dependent on the `ScriptEngine` implementation being used. |_none_ |evaluationTimeout |The amount of time in milliseconds before a request evaluation and iteration of result times out. This feature can be turned off by setting the value to `0`. |30000 |serializers |A `List` of `Map` settings, where each `Map` represents a `MessageSerializer` implementation to use along with its configuration. If this value is not set, then Gremlin Server will configure with GraphSON and GraphBinary but will not register any `ioRegistries` for configured graphs. |_empty_ |serializers[X].className |The full class name of the `MessageSerializer` implementation. |_none_ |serializers[X].config |A `Map` containing `MessageSerializer` specific configurations. |_none_ |sessionLifetimeTimeout |The maximum time in milliseconds that a session can exist. This value cannot be extended beyond this value irrespective of the number of requests and their individual timeouts. The session life cannot be extended once started. This configuration only applies to the `UnifiedChannelizer`. |600000 (10 minutes) |ssl.enabled |Determines if SSL is turned on or not. |false |ssl.keyStore |The private key in JKS or PKCS#12 format. |_none_ |ssl.keyStorePassword |The password of the `keyStore` if it is password-protected. |_none_ |ssl.keyStoreType |`PKCS12` |_none_ |ssl.needClientAuth | Optional. One of NONE, REQUIRE. Enables client certificate authentication at the enforcement level specified. Can be used in combination with Authenticator. |_none_ |ssl.sslCipherSuites |The list of JSSE ciphers to support for SSL connections. If specified, only the ciphers that are listed and supported will be enabled. If not specified, the JVM default is used. |_none_ |ssl.sslEnabledProtocols |The list of SSL protocols to support for SSL connections. If specified, only the protocols that are listed and supported will be enabled. If not specified, the JVM default is used. |_none_ |ssl.trustStore |Required when needClientAuth is REQUIRE. Trusted certificates for verifying the remote endpoint's certificate. If this value is not provided and SSL is enabled, the default `TrustManager` will be used, which will have a set of common public certificates installed to it. |_none_ |ssl.trustStorePassword |The password of the `trustStore` if it is password-protected |_none_ |strictTransactionManagement |Set to `true` to require `aliases` to be submitted on every requests, where the `aliases` become the scope of transaction management. |false |threadPoolBoss |The number of threads available to Gremlin Server for accepting connections. Should always be set to `1`. |1 |threadPoolWorker |The number of threads available to Gremlin Server for processing non-blocking reads and writes. |1 |useCommonEngineForSessions |Ensures that the same `ScriptEngine` is used to support sessions and sessionless requests which will lead to better performance. Do not change this setting from the default without a specific use case in mind. This configuration only applies to the `UnifiedChannelizer`. |true |useEpollEventLoop |Try to use epoll event loops (works only on Linux os) instead of netty NIO. |false |useGlobalFunctionCacheForSessions |Enable the global function cache for sessions when using the `UnifiedChannelizer`. When `true` it means that functions created in one request to a session remain available on the next request to that session. This setting is only relevant when `useGlobalFunctionCacheForSessions` is `false`. |true |writeBufferHighWaterMark | If the number of bytes in the network send buffer exceeds this value then the channel is no longer writeable, accepting no additional writes until buffer is drained and the `writeBufferLowWaterMark` is met. |65536 |writeBufferLowWaterMark | Once the number of bytes queued in the network send buffer exceeds the `writeBufferHighWaterMark`, the channel will not become writeable again until the buffer is drained and it drops below this value. |32768 |========================================================= See the <<metrics,Metrics>> section for more information on how to configure Ganglia and Graphite. [[opprocessor-configurations]] ==== OpProcessor Configurations IMPORTANT: The `UnifiedChannelizer` (deprecated in 3.8.0) does not rely on `OpProcessor` infrastructure. If using that channelizer, these configuration options can be ignored. An `OpProcessor` provides a way to plug-in handlers to Gremlin Server's processing flow. Gremlin Server uses this plug-in system itself to expose the packaged functionality that it exposes. Configurations can be supplied to an `OpProcessor` through the `processors` key in the Gremlin Server configuration file. Each `OpProcessor` can take a `Map` of arguments which are specific to a particular implementation: [source,yaml]
processors: - { className: org.apache.tinkerpop.gremlin.server.op.session.SessionOpProcessor, config: { sessionTimeout: 28800000 }}
The following sub-sections describe those configurations for each `OpProcessor` implementations supplied with Gremlin Server. ===== SessionOpProcessor The `SessionOpProcessor` provides a way to interact with Gremlin Server over a <<sessions,session>>. [width="100%",cols="3,10,^2",options="header"] |========================================================= |Name |Description |Default |globalFunctionCacheEnabled |Determines if the script engine cache for global functions is enabled and behaves as an override to the plugin specific setting of the same name. |true |maxParameters |Maximum number of parameters that can be passed on the request. |16 |perGraphCloseTimeout |Time in milliseconds to wait for each configured graph to close any open transactions when the session is killed. |10000 |sessionTimeout |Time in milliseconds before a session will time out. |28800000 |========================================================= ===== StandardOpProcessor The `StandardOpProcessor` provides a way to interact with Gremlin Server without use of sessions and is the default method for processing script evaluation requests. [width="100%",cols="3,10,^2",options="header"] |========================================================= |Name |Description |Default |maxParameters |Maximum number of parameters that can be passed on the request. |16 |========================================================= [[traversalopprocessor]] ===== TraversalOpProcessor The `TraversalOpProcessor` provides a way to accept traversals configured via <<connecting-via-drivers,with()>>. It has no special configuration settings. ==== Serialization Gremlin Server can accept requests and return results using different serialization formats. Serializers implement the `MessageSerializer` interface. In doing so, they express the list of mime types they expect to support. When configuring multiple serializers it is possible for two or more serializers to support the same mime type. Such a situation may be common with a generic mime type such as `application/json`. Serializers are added in the order that they are encountered in the configuration file and the first one added for a specific mime type will not be overridden by other serializers that also support it. The format of the serialization is configured by the `serializers` setting described in the table above. Note that some serializers have additional configuration options as defined by the `serializers[X].config` setting. The `config` setting is a `Map` where the keys and values get passed to the serializer at its initialization. The available and/or expected keys are dependent on the serializer being used. Gremlin Server comes packaged with two different serializers: GraphSON and GraphBinary. WARNING: Irrespective of the serialization format chosen, it is highly recommended that the serialization format is specified explicitly. For example, prefer `application/vnd.gremlin-v3.0+json` to `application/json`. Use of the drivers tend to take care of this issue internally, but for all other mechanisms it is best to ensure the `Accept` type is defined this way to avoid possible breaking changes or unexpected results, as defaults may vary from server to server. WARNING: When connecting with drivers, never try to specify a serialization format that does not have embedded types. The drivers are designed to use that type information to properly produce results in the programming language's type system and may not function correctly without it. Generally speaking, `GraphBinary` is always the best choice for the drivers. ===== GraphSON The GraphSON serializer produces human-readable output in JSON format and is a good configuration choice for those trying to use TinkerPop from non-JVM languages. JSON obviously has wide support across virtually all major programming languages and can be consumed by a wide variety of tools. The format itself is described in the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/io/#graphson[IO Documentation]. The following table shows the available GraphSON serializers that can be configured: [width="100%",cols="2,2,4,4",options="header"] |========================================================= |Version |Embedded Types |Mime Type |Class |1.0 |yes |`application/vnd.gremlin-v1.0+json` |`GraphSONMessageSerializerGremlinV1` |1.0 |no |`application/vnd.gremlin-v1.0+json;types=false` |`GraphSONUntypedMessageSerializerV1` |2.0 |yes |`application/vnd.gremlin-v2.0+json` |`GraphSONMessageSerializerV2` |2.0 |no |`application/vnd.gremlin-v2.0+json;types=false` |`GraphSONUntypedMessageSerializerV2` |3.0 |yes |`application/vnd.gremlin-v3.0+json` |`GraphSONMessageSerializerV3` |3.0 |no |`application/vnd.gremlin-v3.0+json;types=false` |`GraphSONMessageSerializerV3` |========================================================= The above serializer classes can be found in the `org.apache.tinkerpop.gremlin.util.ser` package of `gremlin-util`. NOTE: Gremlin can produce results that cannot be serialized with untyped GraphSON as the result simply cannot fit the structure JSON inherently allows. A simple example would be `g.V().groupCount()` which returns a `Map`. A `Map` is no problem for JSON, but the key to this `Map` is a `Vertex`, which is a complex object, and cannot be a key in JSON which only allows `String` keys. Untyped GraphSON will simply convert the `Vertex` to a `String` for purpose of serialization and as a result that data and type is lost. If this information is needed, switch to a typed format or adjust the Gremlin query in some way to return it in a different form that fits JSON structure. Configuring GraphSON in the Gremlin Server configuration looks like this: [source,yaml]
-
{ className: org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3 }
Gremlin Server is configured by default with GraphSON 3.0 as shown above. It has the following configuration option: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |ioRegistries |A list of `IoRegistry` implementations to be applied to the serializer. |_none_ |========================================================= It is worth noting that GraphSON 1.0 still has some appeal for some users as it can be configured to produce an untyped JSON format which is a bit easier to consume than its successors which embed data types into the output. This version of GraphSON tends to be the one that users like to utilize when <<connecting-via-http,connecting via HTTP>> and is still used by some <<connecting-rgp, Remote Gremlin Providers>> for this purpose. To configure Gremlin Server this way, the `GraphSONMessageSerializerV1d0` must be included: [source,yaml]
-
{ className: org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV1 }
-
{ className: org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3 }
In the above situation, both `GraphSONMessageSerializerV1d0` and `GraphSONMessageSerializerV3d0` each bind to the `application/json` mime type. When such conflicts arise, Gremlin Server will use the order of the serializers to determine priority such that the first serializer to bind to a type will be used and the others ignored. The following log message will indicate how the server is ultimately configured: [source,text]
[INFO] AbstractChannelizer - Configured application/json with org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV1 [INFO] AbstractChannelizer - Configured application/vnd.gremlin-v3.0+json with org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3 [INFO] AbstractChannelizer - application/json already has org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV1 configured - it will not be replaced by org.apache.tinkerpop.gremlin.util.ser.GraphSONMessageSerializerV3, change order of serialization configuration if this is not desired.
Given the above, using GraphSON 3.0 under this configuration will require that the user specific the type: [source,text]
$ curl -X POST -d "{\"gremlin\":\"100-1\"}" "http://localhost:8182" {"requestId":"f8720ad9-2c8b-4eef-babe-21792a3e3157","status":{"message":"","code":200,"attributes":{}},"result":{"data":[99],"meta":{}}} $ curl -H "Accept:application/vnd.gremlin-v3.0+json" -X POST -d "{\"gremlin\":\"100-1\"}" "http://localhost:8182" {"requestId":"9fdf0892-d86c-41f2-94b5-092785c473eb","status":{"message":"","code":200,"attributes":{"@type":"g:Map","@value":[]}},"result":{"data":{"@type":"g:List","@value":[{"@type":"g:Int32","@value":99}]},"meta":{"@type":"g:Map","@value":[]}}
[[server-graphbinary]]
===== GraphBinary
GraphBinary is a binary serialization format suitable for object trees, designed to reduce serialization overhead on
both the client and the server, as well as limiting the size of the payload that is transmitted over the wire. The
format itself is described in the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/io/#graphbinary[IO Documentation].
[source,yaml]
- { className: org.apache.tinkerpop.gremlin.util.ser.GraphBinaryMessageSerializerV1 }
It has the MIME type of `application/vnd.graphbinary-v1.0` and the following configuration options:
[width="100%",cols="3,10,^2",options="header"]
|=========================================================
|Key |Description |Default
|custom |A list of classes with custom kryo `Serializer` implementations related to them in the form of `<class>;<serializer-class>`. |_none_
|ioRegistries |A list of `IoRegistry` implementations to be applied to the serializer. |_none_
|builder |Name of the `TypeSerializerRegistry.Builder` instance to be used to construct the `TypeSerializerRegistry`. |_none_
|=========================================================
As described above, there are multiple ways in which to register serializers for GraphBinary-based serialization. Note
that the `ioRegistries` setting is applied first, followed by the `custom` setting.
[[metrics]]
==== Metrics
Gremlin Server produces metrics about its operations that can yield some insight into how it is performing. These
metrics are exposed in a variety of ways:
* Directly to the console where Gremlin Server is running
* CSV file
* link:http://ganglia.info/[Ganglia]
* link:http://graphite.wikidot.com/[Graphite]
* link:http://www.slf4j.org/[SLF4j]
* link:https://en.wikipedia.org/wiki/Java_Management_Extensions[JMX]
The configuration of each of these outputs is described in the Gremlin Server <<_configuring_2, Configuring>> section.
Note that Graphite and Ganglia are not included as part of the Gremlin Server distribution and must be installed
to the server manually.
[source,text]
bin/gremlin-server.sh install com.codahale.metrics metrics-ganglia 3.0.2 bin/gremlin-server.sh install com.codahale.metrics metrics-graphite 3.0.2
WARNING: Gremlin Server is built to work with Metrics 3.0.2. Usage of other versions may lead to unexpected problems. NOTE: Installing Ganglia will include `org.acplt:oncrpc`, which is an LGPL licensed dependency. Regardless of the output, the metrics gathered are the same. Each metric is prefixed with `org.apache.tinkerpop.gremlin.server.GremlinServer` and the following metrics are reported: * `channels.paused` - The current number of open channels (HTTP and Websocket) that have their writes to buffer paused when the `writeBufferHighWaterMark` configuration is exceeded. * `channels.total` - The current number of open channels (HTTP and Websocket). * `channels.write-pauses` - The total number of pauses across all channels (HTTP and Websocket) to buffer writes where the `writeBufferHighWaterMark` configuration is exceeded, with mean rate, as well as the 1, 5, and 15-minute rates. * `engine-name.session.session-id.*` - Metrics related to different `GremlinScriptEngine` instances configured for session-based requests where "engine-name" will be the actual name of the engine, such as "gremlin-groovy" and "session-id" will be the identifier for the session itself. This metric is not measured under the `UnifiedChannelizer`. * `engine-name.sessionless.*` - Metrics related to different `GremlinScriptEngine` instances configured for sessionless requests where "engine-name" will be the actual name of the engine, such as "gremlin-groovy". This metric is not measured under the `UnifiedChannelizer`. * `errors` - The number of total errors, mean rate, as well as the 1, 5, and 15-minute error rates. * `op.eval` - The number of script evaluations, mean rate, 1, 5, and 15 minute rates, minimum, maximum, median, mean, and standard deviation evaluation times, as well as the 75th, 95th, 98th, 99th and 99.9th percentile evaluation times (note that these time apply to both sessionless and in-session requests). * `op.traversal` - The number of `Traversal` bytecode-based executions, mean rate, 1, 5, and 15 minute rates, minimum, maximum, median, mean, and standard deviation evaluation times, as well as the 75th, 95th, 98th, 99th and 99.9th percentile evaluation times. * `sessions` - The number of sessions open at the time the metric was last measured. For the `UnifiedChannelizer`, each request creates a "session", even a so-called "sessionless request", which is basically a session that will only execute within the context of that single request. * `user-agent.*` - Counts the number of connection requests from clients providing a given user agent. NOTE: Gremlin Server has a limit of 10000 unique user agents to be tracked by metrics. If this cap is exceeded any additional unique user agents will be counted as `user-agent.other`. ==== As A Service Gremlin server can be configured to run as a service. ===== Init.d (SysV) Link `bin/gremlin-server.sh` to `init.d` Be sure to set RUNAS to the service user in `bin/gremlin-server.conf` [source,bash]
# Install ln -s /path/to/apache-tinkerpop-gremlin-server-3.8.0-SNAPSHOT/bin/gremlin-server.sh /etc/init.d/gremlin-server
# Systems with chkconfig/service. E.g. Fedora, Red Hat chkconfig --add gremlin-server
# Start service gremlin-server start
# Or call directly /etc/init.d/gremlin-server restart
===== Systemd To install, copy the service template below to /etc/systemd/system/gremlin.service and update the paths `/path/to/apache-tinkerpop-gremlin-server` with the actual install path of Gremlin Server. [source,bash]
Description=Apache TinkerPop Gremlin Server daemon Documentation=https://tinkerpop.apache.org/ After=network.target
Type=forking ExecStart=/path/to/apache-tinkerpop-gremlin-server/bin/gremlin-server.sh start ExecStop=/path/to/apache-tinkerpop-gremlin-server/bin/gremlin-server.sh stop PIDFile=/path/to/apache-tinkerpop-gremlin-server/run/gremlin.pid
WantedBy=multi-user.target
Enable the service with `systemctl enable gremlin-server`
Start the service with `systemctl start gremlin-server`
[[security]]
=== Security
image:gremlin-server-secure.png[width=175,float=right] Gremlin Server provides for several features that aid in the
security of the graphs that it exposes. In particular it supports SSL for transport layer security, authentication,
authorization and protective measures against malicious script execution. Client SSL options are described in the
<<gremlin-drivers-variants, Gremlin Drivers and Variants">> sections with varying capability depending on the driver
chosen. Script execution options are covered <<script-execution, "at the end of this section">>. This section
starts with authentication.
Gremlin Server supports a pluggable authentication framework using
link:https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer[SASL] (Simple Authentication and
Security Layer). Depending on the client used to connect to Gremlin Server, different authentication
mechanisms are accessible, see the table below.
[width="70%",cols="3,5,3",options="header"]
|=========================================================
|Client |Authentication mechanism |Availability
|HTTP |BASIC |3.0.0-incubating
1.3+v|Gremlin-Java/
Gremlin-Console |PLAIN SASL (username/password) |3.0.0-incubating
|Pluggable SASL |3.0.0-incubating
|GSSAPI SASL (Kerberos) |3.3.0
|Gremlin.NET |PLAIN SASL |3.3.0
1.2+v|Gremlin-Python |PLAIN SASL |3.2.2
|GSSAPI SASL (Kerberos) |3.4.7
|Gremlin.Net |PLAIN SASL |3.2.7
|Gremlin-Javascript |PLAIN SASL |3.3.0
|Gremlin-go |PLAIN SASL |3.5.4
|=========================================================
By default, Gremlin Server is configured to allow all requests to be processed (i.e. no authentication). To enable
authentication, Gremlin Server must be configured with an `Authenticator` implementation in its YAML file. Gremlin
Server comes packaged with two implementations called `SimpleAuthenticator` for plain text authentication using HTTP
BASIC or PLAIN SASL and `Krb5Authenticator` for Kerberos authentication using GSSAPI SASL.
==== Plain text authentication
The `SimpleAuthenticator` implements the "PLAIN" SASL mechanism (i.e. plain text) to authenticate a request. It also
supports handling basic authentication requests from http clients. It validates
username/password pairs against a graph database, which must be provided to it as part of the configuration.
[source,yaml]
authentication: {
authenticator: org.apache.tinkerpop.gremlin.server.auth.SimpleAuthenticator,
config: {
credentialsDb: conf/tinkergraph-credentials.properties}}
A quick way to get started with the `SimpleAuthenticator` is to use TinkerGraph for the "credentials graph" and the
"sample" credential graph that is packaged with the server. To secure the transport for the credentials,
SSL should be enabled. For this Quick Start, a self-signed certificate will be created but this should not
be used in a production environment.
Generate the self-signed SSL certificate:
[source,text]
$ keytool -genkey -alias localhost -keyalg RSA -keystore server.jks Enter keystore password: Re-enter new password: What is your first and last name? [Unknown]: localhost What is the name of your organizational unit? [Unknown]: What is the name of your organization? [Unknown]: What is the name of your City or Locality? [Unknown]: What is the name of your State or Province? [Unknown]: What is the two-letter country code for this unit? [Unknown]: Is CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct? [no]: yes
Enter key password for <localhost> (RETURN if same as keystore password):
Next, uncomment the `keyStore` and `keyStorePassword` lines in `conf/gremlin-server-secure.yaml`. [source,yaml]
ssl: { enabled: true, sslEnabledProtocols: [TLSv1.2], keyStore: server.jks, keyStorePassword: changeit }
[source,text]
$ bin/gremlin-server.sh conf/gremlin-server-secure.yaml [INFO] GremlinServer - \,,,/ (o o) -----oOOo-(3)-oOOo-----
[INFO] GremlinServer - Configuring Gremlin Server from conf/gremlin-server-secure.yaml … [INFO] AbstractChannelizer - SSL enabled [INFO] SimpleAuthenticator - Initializing authentication with the org.apache.tinkerpop.gremlin.server.auth.SimpleAuthenticator [INFO] SimpleAuthenticator - CredentialGraph initialized at CredentialGraph{graph=tinkergraph[vertices:1 edges:0]} [INFO] GremlinServer$1 - Gremlin Server configured with worker thread pool of 1, gremlin pool of 8 and boss thread pool of 1. [INFO] GremlinServer$1 - Channel started at port 8182.
When SSL is enabled on the server, it must also be enabled on the client when connecting. To connect to
Gremlin Server with the <<gremlin-java,`gremlin-driver`>>, set the `credentials`, `enableSsl`, and `trustStore`
when constructing the `Cluster`.
[source,java]
Cluster cluster = Cluster.build().credentials("stephen", "password")
.enableSsl(true).trustStore("server.jks").create();
If connecting with Gremlin Console, which utilizes `gremlin-driver` for remote script execution, use the provided
`conf/remote-secure.yaml` file when defining the remote. That file contains configuration for the username and
password as well as enablement of SSL from the client side. Be sure to configure the trustStore if using self-signed
certificates.
Similarly, Gremlin Server can be configured for REST and security. Follow the steps above for configuring the SSL
certificate.
[source,text]
$ bin/gremlin-server.sh conf/gremlin-server-rest-secure.yaml [INFO] GremlinServer - \,,,/ (o o) -----oOOo-(3)-oOOo-----
[INFO] GremlinServer - Configuring Gremlin Server from conf/gremlin-server-secure.yaml … [INFO] AbstractChannelizer - SSL enabled [INFO] SimpleAuthenticator - Initializing authentication with the org.apache.tinkerpop.gremlin.server.auth.SimpleAuthenticator [INFO] SimpleAuthenticator - CredentialGraph initialized at CredentialGraph{graph=tinkergraph[vertices:1 edges:0]} [INFO] GremlinServer$1 - Gremlin Server configured with worker thread pool of 1, gremlin pool of 8 and boss thread pool of 1. [INFO] GremlinServer$1 - Channel started at port 8182.
Once the server has started, issue a request passing the credentials with an `Authentication` header, as described in link:http://tools.ietf.org/html/rfc2617#section-2[RFC2617]. Here's a HTTP Basic authentication example with cURL:
[source,text]
curl -X POST --insecure -u stephen:password -d "{\"gremlin\":\"100-1\"}" "https://localhost:8182"
[[credentials-dsl]]
==== Credentials Graph DSL
The "credentials graph", which has been mentioned in previous sections, is used by Gremlin Server to hold the list of
users who can authenticate to the server. It is possible to use virtually any `Graph` instance for this task as long
as it complies to a defined schema. The credentials graph stores users as vertices with the `label` of "user". Each
"user" vertex has two properties: `username` and `password`. Naturally, these are both `String` values. The password
must not be stored in plain text and should be hashed.
IMPORTANT: Be sure to define an index on the `username` property, as this will be used for lookups. If supported by
the `Graph`, consider specifying a unique constraint as well.
To aid with the management of a credentials graph, Gremlin Server provides a Gremlin Console plugin which can be
used to add and remove users so as to ensure that the schema is adhered to, thus ensuring compatibility with Gremlin
Server. In addition, as it is a plugin, it works naturally in the Gremlin Console as an extension of its
capabilities (though one could use it programmatically, if desired). This plugin is distributed with the Gremlin
Console so it does not have to be "installed". It does however need to be activated:
[source,groovy]
gremlin> :plugin use tinkerpop.credentials
==>tinkerpop.credentials activated
Please see the example usage as follows:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-25" type="radio" name="radio-set-1761594617-25" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-25" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-26" type="radio" name="radio-set-1761594617-25" class="tab-selector-2" />
<label for="tab-1761594617-26" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerGraph.open() =⇒tinkergraph[vertices:0 edges:0] gremlin> graph.createIndex("username",Vertex.class) =⇒null gremlin> credentials = traversal(CredentialTraversalSource.class).with(graph) =⇒credentialtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> credentials.user("stephen","password") =⇒v[0] gremlin> credentials.user("daniel","better-password") =⇒v[3] gremlin> credentials.user("marko","rainbow-dash") =⇒v[6] gremlin> credentials.users("marko").elementMap() =⇒[id:6,label:user,password:$2a$04$IkvL094gRPVGR/ArOmShS.O7Xx1XIoOjFwGBk57gH/wcqzgbzjQPO,username:marko] gremlin> credentials.users().count() =⇒3 gremlin> credentials.users("daniel").drop() gremlin> credentials.users().count() =⇒2
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerGraph.open() graph.createIndex("username",Vertex.class) credentials = traversal(CredentialTraversalSource.class).with(graph) credentials.user("stephen","password") credentials.user("daniel","better-password") credentials.user("marko","rainbow-dash") credentials.users("marko").elementMap() credentials.users().count() credentials.users("daniel").drop() credentials.users().count()
++++
</div>
</div>
</section>
++++
NOTE: The Credentials DSL is built using TinkerPop's DSL Annotation Processor described <<gremlin-java-dsl,here>>.
IMPORTANT: In the above example, an empty in-memory TinkerGraph was used for demonstrating the API of the DSL.
Obviously, this data will not be retained and usable with Gremlin Server. It would be important to configure
TinkerGraph to persist that data or to manually persist it (e.g. write the graph data to Gryo) once changes are
complete. Alternatively, use a persistent graph to hold the credentials and configure Gremlin Server accordingly.
[[krb5authenticator]]
==== Kerberos Authentication
The `Krb5Authenticator` implements the "GSSAPI" SASL mechanism (i.e. Kerberos) to authenticate a request from a Gremlin
client. It can be applied in an existing Kerberos environment and validates whether a
link:https://www.roguelynn.com/words/explain-like-im-5-kerberos/[valid authentication proof and service ticket are
offered].
[source,yaml]
authentication: {
authenticator: org.apache.tinkerpop.gremlin.server.auth.Krb5Authenticator,
config: {
principal: gremlinserver/hostname.your.org@YOUR.REALM,
keytab: /etc/security/keytabs/gremlinserver.service.keytab}}
`Krb5Authenticator` needs a Kerberos service principal and a keytab that holds the secret key for that principal. The keytab
location and service name, e.g. gremlinserver, are free to be chosen. `Krb5Authenticator` finds the KDC's hostname and
port from the krb5.conf file with Kerberos configurations. This file can reside at either the
https://web.mit.edu/kerberos/krb5-devel/doc/mitK5defaults.html[default location] or a location to be specified as a
system property in the JAVA_OPTIONS environment variable of Gremlin Server:
[source, bash]
export JAVA_OPTIONS="${JAVA_OPTIONS} -Xms512m -Xmx4096m -Djava.security.krb5.conf=/etc/krb5.conf"
Gremlin clients have to specify the service name as the `protocol` connection parameter. For Gremlin-Console the
`protocol` is an entry in the remote.yaml file, for Gremlin-java the client builder has a `protocol()` method.
In addition to the `protocol`, the Gremlin client needs to specify a `jaasEntry`, an entry in the
link:https://en.wikipedia.org/wiki/Java_Authentication_and_Authorization_Service[JAAS] configuration file. As a
start one can define a conf/gremlin-jaas.conf file with a `GremlinConsole` jaasEntry:
[source, jaas]
GremlinConsole {
com.sun.security.auth.module.Krb5LoginModule required
doNotPrompt=true
useTicketCache=true;
};
This configuration tells Gremlin Console to pass authentication requests from Gremlin Server to the Krb5LoginModule, which is
part of the java standard library. The Krb5LoginModule does not prompt the user for a username and password but uses the
ticket cache that is normally refreshed when a user logs in to a host within the Kerberos realm.
The Gremlin client needs the location of the JAAS configuration file to be passed as a system property to the JVM. For
Gremlin-Console the easiest way to do this is to pass it to the run script via the JAVA_OPTIONS environment property.
If the krb5.conf Kerberos configuration file is not available from the
https://web.mit.edu/kerberos/krb5-devel/doc/mitK5defaults.html[default location] it has to be provided as a system
property as well:
[source, bash]
JAAS_OPTION="-Djava.security.auth.login.config=conf/gremlin-jaas.conf"
KRB5_OPTION="-Djava.security.krb5.conf=/etc/krb5.conf"
export JAVA_OPTIONS="${JAVA_OPTIONS} ${KRB5_OPTION} ${JAAS_OPTION}"
[[authorization]]
==== Authorization
While authentication determines which clients can connect to Gremlin Server, authorization regulates which elements
of the exposed graphs a specific user is allowed to create, read, update or delete (CRUD). Authorization in Gremlin
Server can take place at two instances. Before execution a user request can be allowed or denied based on the
presence of operations such as:
* reading from a GraphTraversalSource
* writing to a GraphTraversalSource
* presence of lambdas in bytecode
* script execution
* `VertexProgram` execution (OLAP)
* removal or modification of `TraversalStrategy` instances
During execution the applied traversal strategies influence the results and side-effects of a given query.
IMPORTANT: Authorization is a feature of Gremlin Server, but is not implemented as an element of the server protocol
and therefore Remote Graph Providers may not have this feature or may not implement it in this particular way. Please
consult the documentation of the graph you are using to determine what authorization features it supports.
===== Mechanisms
Gremlin Server supports three mechanisms to configure authorization:
. With the `ScriptFileGremlinPlugin` a groovy script is configured that instantiates the `GraphTraversalSources` that
can be accessed by client requests. Using the `withStrategies()` gremlin
link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/reference/#start-steps[start step], one can apply so-called
link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/reference/#traversalstrategy[TraversalStrategy instances] to these
`GraphTraversalSource` instances, some of which can serve for authorization purposes (`ReadOnlyStrategy`,
`LambdaRestrictionStrategy`, `VertexProgramRestrictionStrategy`, `SubgraphStrategy`, `PartitionStrategy`,
`EdgeLabelVerificationStrategy`), provided that users are not allowed to remove or modify these `TraversalStrategy`
instances afterwards. The `ScriptFileGremlinPlugin` is found in the yaml configuration file for Gremlin Server:
+
[source,yaml]
scriptEngines: { gremlin-groovy: { plugins: { org.apache.tinkerpop.gremlin.jsr223.ScriptFileGremlinPlugin: {files: [scripts/empty-sample.groovy]}}}}
. Administrators can configure an authorizer class, an implementation of the `Authorizer` interface. An authorizer receives a request before it is executed and it can decide to pass or deny the request, based on the information it has available on the requesting user or can seek externally. . Apart from passing or denying requests, an `Authorizer` implementation can actively modify the request, in particular add the `TraversalStrategy` instances mentioned in item 1. IMPORTANT: This section is written with gremlin bytecode requests in mind. Realizing authorization for script requests is hardly feasible, because such requests get full access to Gremlin Server's execution environment. Although the section <<script-execution>> explains how the client access to this environment can be restricted, it is not possible to deny execution of `GraphFactory.open()` or `GraphTraversalSource.getGraph()` methods without resorting to TinkerPop implementation details (that is, internal API's that can change without notice). The three mechanisms for authorization each have their merits in terms of simplicity and flexibility. The table below gives an overview. [width="95%",cols="5,2,2,4",options="header"] |========================================================= |Type (mechanism) |GraphTraversalSources |Groups |Bytecode analysis |Implicit (init script) | all accessible |one |`withStrategies()` |Passive (pass/deny) | selected access |few |hybrid |Active (inject) |selected access |many |hybrid |========================================================= With implicit authorization (only adding restricting `TraversalStrategy` instances in the initialization script of Gremlin Server) all authenticated users can access all hosted `GraphTraversalSources` and all face the same restrictions. One would need separate Gremlin Server instances for each authorization policy and apply an authenticator that restricts access to a group of users (that is, supports in authorization). The other extreme is the active authorization solution that injects the restricting `Strategies` into the user request, following a policy that takes into account both the authenticated user and the original request. While this solution is the most flexible and can support an almost unlimited number of authorization policies, it is somewhat complex to implement. In particular, applying the `SubgraphStrategy` requires knowledge about the schema of the graph. The passive authorization solution perhaps provides a middle ground to start implementing authorization. This solution assumes that the `SubgraphStrategy` is applied in the Gremlin Server initialization script, because compliance with a subgraph restriction can only be determined during the actual execution of the gremlin traversal. Note that the same graph can be reused with different `SubgraphStrategies`. Now, authorization policies can be defined in terms of accessible `GraphTraversalSources` and the authorizer can simply match the requested access to a `GraphTraversalSource` against the policies applicable to the authenticated user. Like for the active authorization solution, other restrictions such as read only access can be either applied at authorization time as policy in the authorizer itself or at request execution time as a result of an applied `Strategy` (denoted as 'hybrid' bytecode analysis in the table). A code example pursuing the former option is provided in the <<authz-code-example, next section>>. NOTE: Both the passive and active authorization solutions need to analyze the gremlin bytecode of the original request for unwanted removal of restricting Strategies. NOTE: Gremlin Server is not shipped with `Authorizer` implementations, because these would heavily depend on the external systems to integrate with, e.g. link:https://ldap.com/directory-servers/[LDAP systems] or link:https://ranger.apache.org/[Apache Ranger ]. However, third-party implementations can be offered as <<gremlin-plugins, gremlin plugins>>. [[authz-code-example]] ===== Code example The two java classes below provide an example implementation of the `Authorizer` interface; they originate from link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/gremlin-server/src/test/java/org/apache/tinkerpop/gremlin/server/authz[Gremlin Server's test package]. If you copy the files into a project, build them into a jar and add the jar to Gremlin Server's CLASSPATH, you can use them by adding the following to Gremlin Server's yaml configuration file: [source, yaml]
authentication: { authenticator: org.apache.tinkerpop.gremlin.server.auth.SimpleAuthenticator, config: { credentialsDb: conf/tinkergraph-credentials.properties}} authorization: { authorizer: org.yourpackage.AllowListAuthorizer, config: { authorizationAllowList: your/path/allow-list.yaml}}
The `AllowListAuthorizer` supports granting groups of users access to statically configured `GraphTraversalSource` instances and to the "sandbox", where sandbox means that the group is allowed anything unless restricted by Gremlin Server's <<script-execution,sandbox>>. For denying mutating steps and OLAP operations in bytecode requests, the `AllowListAuthorizer` relies on the `ReadOnlyStrategy` and `VertexProgramRestrictionStrategy` being present in the `GraphTraversalSource`. However, it always denies the use of lambdas in bytecode requests unless the user has the "sandbox" grant. It uses the `BytecodeHelper.getLambdaLanguage()` method to detect these. The grants to groups of users can be configured in a simple yaml file. In addition to the special value "sandbox" for a grant for string based requests and lambdas, the special value "anonymous" can be used to denote any user. [source,java]
package org.yourpackage;
import org.apache.tinkerpop.gremlin.util.message.RequestMessage; import org.apache.tinkerpop.gremlin.process.computer.traversal.strategy.verification.VertexProgramRestrictionStrategy; import org.apache.tinkerpop.gremlin.process.traversal.Bytecode; import org.apache.tinkerpop.gremlin.process.traversal.TraversalSource; import org.apache.tinkerpop.gremlin.process.traversal.strategy.decoration.SubgraphStrategy; import org.apache.tinkerpop.gremlin.process.traversal.strategy.verification.ReadOnlyStrategy; import org.apache.tinkerpop.gremlin.process.traversal.util.BytecodeHelper; import org.apache.tinkerpop.gremlin.server.Settings.AuthorizationSettings; import org.apache.tinkerpop.gremlin.server.auth.AuthenticatedUser;
import java.util.*;
/** * Authorizes a user per request, based on a list that grants access to {@link TraversalSource} instances for * bytecode requests and to gremlin server’s sandbox for string requests and lambdas. The {@link * AuthorizationSettings}.config must have an authorizationAllowList entry that contains the name of a YAML file. * This authorizer is for demonstration purposes only. It does not scale well in the number of users regarding * memory usage and administrative burden. */ public class AllowListAuthorizer implements Authorizer {
public static final String SANDBOX = "sandbox"; public static final String REJECT_BYTECODE = "User not authorized for bytecode requests on %s"; public static final String REJECT_LAMBDA = "lambdas"; public static final String REJECT_MUTATE = "the ReadOnlyStrategy"; public static final String REJECT_OLAP = "the VertexProgramRestrictionStrategy"; public static final String REJECT_SUBGRAPH = "the SubgraphStrategy"; public static final String REJECT_STRING = "User not authorized for string-based requests."; public static final String KEY_AUTHORIZATION_ALLOWLIST = "authorizationAllowList";
// Collections derived from the list with allowed users for fast lookups private final Map<String, List<String>> usernamesByTraversalSource = new HashMap<>(); private final Set<String> usernamesSandbox = new HashSet<>();
/**
* This method is called once upon system startup to initialize the {@code AllowListAuthorizer}.
*/
@Override
public void setup(final Map<String,Object> config) {
AllowList allowList;
final String file = (String) config.get(KEY_AUTHORIZATION_ALLOWLIST);
try {
allowList = AllowList.read(file);
} catch (Exception e) {
throw new IllegalArgumentException(String.format("Failed to read list with allowed users from %s", file));
}
for (Map.Entry<String, List<String>> entry : allowList.grants.entrySet()) {
if (!entry.getKey().equals(SANDBOX)) {
usernamesByTraversalSource.put(entry.getKey(), new ArrayList<>());
}
for (final String group : entry.getValue()) {
if (allowList.groups.get(group) == null) {
throw new RuntimeException(String.format("Group '%s' not defined in file with allowed users.", group));
}
if (entry.getKey().equals(SANDBOX)) {
usernamesSandbox.addAll(allowList.groups.get(group));
} else {
usernamesByTraversalSource.get(entry.getKey()).addAll(allowList.groups.get(group));
}
}
}
}
/**
* Checks whether a user is authorized to have a gremlin bytecode request from a client answered and raises an
* {@link AuthorizationException} if this is not the case. For a request to be authorized, the user must either
* have a grant for the requested {@link TraversalSource}, without using lambdas, mutating steps or OLAP, or have a
* sandbox grant.
*
* @param user {@link AuthenticatedUser} that needs authorization.
* @param bytecode The gremlin {@link Bytecode} request to authorize the user for.
* @param aliases A {@link Map} with a single key/value pair that maps the name of the {@link TraversalSource} in the
* {@link Bytecode} request to name of one configured in Gremlin Server.
* @return The original or modified {@link Bytecode} to be used for further processing.
*/
@Override
public Bytecode authorize(final AuthenticatedUser user, final Bytecode bytecode, final Map<String, String> aliases) throws AuthorizationException {
final Set<String> usernames = new HashSet<>();
for (final String resource: aliases.values()) {
usernames.addAll(usernamesByTraversalSource.get(resource));
}
final boolean userHasTraversalSourceGrant = usernames.contains(user.getName()) || usernames.contains(AuthenticatedUser.ANONYMOUS_USERNAME);
final boolean userHasSandboxGrant = usernamesSandbox.contains(user.getName()) || usernamesSandbox.contains(AuthenticatedUser.ANONYMOUS_USERNAME);
final boolean runsLambda = BytecodeHelper.getLambdaLanguage(bytecode).isPresent();
final boolean touchesReadOnlyStrategy = bytecode.toString().contains(ReadOnlyStrategy.class.getSimpleName());
final boolean touchesOLAPRestriction = bytecode.toString().contains(VertexProgramRestrictionStrategy.class.getSimpleName());
// This element becomes obsolete after resolving TINKERPOP-2473 for allowing only a single instance of each traversal strategy.
final boolean touchesSubgraphStrategy = bytecode.toString().contains(SubgraphStrategy.class.getSimpleName());
final List<String> rejections = new ArrayList<>();
if (runsLambda) {
rejections.add(REJECT_LAMBDA);
}
if (touchesReadOnlyStrategy) {
rejections.add(REJECT_MUTATE);
}
if (touchesOLAPRestriction) {
rejections.add(REJECT_OLAP);
}
if (touchesSubgraphStrategy) {
rejections.add(REJECT_SUBGRAPH);
}
String rejectMessage = REJECT_BYTECODE;
if (rejections.size() > 0) {
rejectMessage += " using " + String.join(", ", rejections);
}
rejectMessage += ".";
if ( (!userHasTraversalSourceGrant || runsLambda || touchesOLAPRestriction || touchesReadOnlyStrategy || touchesSubgraphStrategy) && !userHasSandboxGrant) {
throw new AuthorizationException(String.format(rejectMessage, aliases.values()));
}
return bytecode;
}
/**
* Checks whether a user is authorized to have a script request from a gremlin client answered and raises an
* {@link AuthorizationException} if this is not the case.
*
* @param user {@link AuthenticatedUser} that needs authorization.
* @param msg {@link RequestMessage} in which the {@link org.apache.tinkerpop.gremlin.util.Tokens}.ARGS_GREMLIN argument can contain an arbitrary succession of script statements.
*/
public void authorize(final AuthenticatedUser user, final RequestMessage msg) throws AuthorizationException {
if (!usernamesSandbox.contains(user.getName())) {
throw new AuthorizationException(REJECT_STRING);
}
}
}
[source,java]
package org.yourpackage;
import org.yaml.snakeyaml.TypeDescription; import org.yaml.snakeyaml.Yaml; import org.yaml.snakeyaml.constructor.Constructor;
import java.io.File; import java.io.FileInputStream; import java.io.InputStream; import java.util.List; import java.util.Map; import java.util.Optional;
/** * AllowList for the AllowListAuthorizer as configured by a YAML file. */ public class AllowList {
/** * Holds lists of groups by grant. A grant is either a TraversalSource name or the "sandbox" value. With the * sandbox grant users can access all TraversalSource instances and execute groovy scripts as string based * requests or as lambda functions, only limited by Gremlin Server's sandbox definition. */ public Map<String, List<String>> grants;
/** * Holds lists of user names by groupname. The "anonymous" user name can be used to denote any user. */ public Map<String, List<String>> groups;
/**
* Read a configuration from a YAML file into an {@link AllowList} object.
*
* @param file the location of a AllowList YAML configuration file
* @return An {@link Optional} object wrapping the created {@link AllowList}
*/
public static AllowList read(final String file) throws Exception {
final InputStream stream = new FileInputStream(new File(file));
final Constructor constructor = new Constructor(AllowList.class);
final TypeDescription allowListDescription = new TypeDescription(AllowList.class);
allowListDescription.putMapPropertyType("grants", String.class, Object.class);
allowListDescription.putMapPropertyType("groups", String.class, Object.class);
constructor.addTypeDescription(allowListDescription);
final Yaml yaml = new Yaml(constructor);
return yaml.loadAs(stream, AllowList.class);
}
}
allow-list.yaml: [source,yaml]
grants: { gclassic: [groupclassic], gmodern: [groupmodern], gcrew: [groupclassic, groupmodern], ggrateful: [groupgrateful], sandbox: [groupsandbox] }
groups: { groupclassic: [userclassic], groupmodern: [usermodern, stephen], groupsink: [usersink], groupgrateful: [anonymous], groupsandbox: [usersandbox, marko] }
[[script-execution]]
==== Protecting Script Execution
It is important to remember that Gremlin Server exposes `GremlinScriptEngine` instances that allows for remote execution
of arbitrary code on the server. Obviously, this situation can represent a security risk or, more minimally, provide
ways for "bad" scripts to be inadvertently executed. A simple example of a "valid" Gremlin script that would cause
some problems would be, `while(true) {}`, which would consume a thread in the Gremlin pool indefinitely, thus
preventing it from serving other requests. Sending enough of these kinds of scripts would eventually consume all
available threads and Gremlin Server would stop responding.
Scripts have access to the full power of their language and the JVM on which they are running. This means that they
can access certain APIs that have nothing to do with Gremlin itself, such as `java.lang.System` or the `java.io`
and `java.net` packages. Scripts offer developers a lot of flexibility, but having that flexibility comes at the cost
of safety. A Gremlin Server instance that is not secured appropriately provides for a big security risk.
The previous sections discussed methods for securing Gremlin Server through authentication and encryption, which is a
good first step in protection. Another layer of protection comes in the form of specific configurations for the
`GremlinGroovyScriptEngine`. A user can configure the script engine with a `GroovyCompilerGremlinPlugin`
implementation. Consider the basic configuration from the Gremlin Server YAML file:
[source,yaml]
scriptEngines: { gremlin-groovy: { plugins: { org.apache.tinkerpop.gremlin.server.jsr223.GremlinServerGremlinPlugin: {}, org.apache.tinkerpop.gremlin.tinkergraph.jsr223.TinkerGraphGremlinPlugin: {}, org.apache.tinkerpop.gremlin.jsr223.ImportGremlinPlugin: {classImports: [java.lang.Math], methodImports: [java.lang.Math#*]}, org.apache.tinkerpop.gremlin.jsr223.ScriptFileGremlinPlugin: {files: [scripts/empty-sample.groovy]}}}}
This configuration can be expanded to include a the `GroovyCompilerGremlinPlugin`: [source,yaml]
scriptEngines: { gremlin-groovy: { plugins: { org.apache.tinkerpop.gremlin.server.jsr223.GremlinServerGremlinPlugin: {}, org.apache.tinkerpop.gremlin.tinkergraph.jsr223.TinkerGraphGremlinPlugin: {} org.apache.tinkerpop.gremlin.jsr223.ImportGremlinPlugin: {classImports: [java.lang.Math], methodImports: [java.lang.Math#*]}, org.apache.tinkerpop.gremlin.jsr223.ScriptFileGremlinPlugin: {files: [scripts/empty-sample-secure.groovy]}, org.apache.tinkerpop.gremlin.groovy.jsr223.GroovyCompilerGremlinPlugin: {enableThreadInterrupt: true}}}}
This configuration sets up the script engine with to ensure that loops (like `while`) will respect interrupt requests.
With this configuration in place, a remote execution as follows, now times out rather than consuming the thread
continuously:
[source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote.yaml
==>Configured localhost/127.0.0.1:8182
gremlin> :> while(true) { }
==>Evaluation exceeded the configured 'evaluationTimeout' threshold of 30000 ms or evaluation was otherwise cancelled directly for request [while(true) {}]
The `GroovyCompilerGremlinPlugin` has a number of configuration options:
[width="100%",cols="3,10a",options="header"]
|=========================================================
|Customizer |Description
|`compilation` |Allows for three configurations: `COMPILE_STATIC`, `TYPE_CHECKED` or `NONE` (default). When configured with `COMPILE_STATIC` or `TYPE_CHECKED` it applies `CompileStatic` or `TypeChecked` annotations (respectively) to incoming scripts thus removing dynamic dispatch. More information about static compilation can be found link:http://docs.groovy-lang.org/latest/html/documentation/#_static_compilation[here] and additional information on `TypeChecked` usage can be found link:http://docs.groovy-lang.org/latest/html/documentation/#_the_code_typechecked_code_annotation[here].
|`compilerConfigurationOptions` |Allows configuration of the Groovy `CompilerConfiguration` object by taking a `Map` of key/value pairs where the "key" is a property to set on the `CompilerConfiguration`.
|`enableThreadInterrupt` |Injects checks for thread interruption, thus allowing the script to potentially respect calls to `Thread.interrupt()`
|`expectedCompilationTime` |The amount of time in milliseconds a script is allowed to compile before a warning message is sent to the logs.
|`globalFunctionCacheEnabled` |Determines if the global function cache is enabled. By default, this value is `true` - described in more detail in the <<gremlin-server-cache,Cache Management>> Section.
|`classMapCacheSpecification` |The cache specification for the `GremlinGroovyScriptEngine` class map cache - described in more detail in the <<gremlin-server-cache,Cache Management>> Section.
|`extensions` | This setting is for use when `compilation` is configured with `COMPILE_STATIC` or `TYPE_CHECKED` and accepts a comma separated list of link:http://docs.groovy-lang.org/latest/html/documentation/#Typecheckingextensions-Workingwithextensions[type checking extensions] that can have the effect of securing calls to various methods.
|=========================================================
NOTE: Consult the latest link:http://docs.groovy-lang.org/latest/html/documentation/#_typing[Groovy Documentation]
for information on the differences on the various compilation options. It is important to understand the impact that
these configuration will have on submitted scripts before enabling this feature.
IMPORTANT: TinkerPop does not offer an end-to-end out-of-the-box solution to perfectly protect against bad actors
submitting nefarious scripts. The configurations to follow which discuss the `SimpleSandboxExtension` and
`FileSandboxExtension` are meant to represent example implementations that users and providers can gain some
inspiration from in developing their own solutions. Please consult the documentation of your TinkerPop implementation
to determine how scripts are "secured" as many providers have taken their own approaches to solving this problem.
Securing scripts (i.e. preventing access to certain methods) is a bit more complicated of a story. As an example,
TinkerPop implemented some basic "sandbox" implementations as described in this
link:https://melix.github.io/blog/2015/03/sandboxing.html[blog post] to try to demonstrate a method by which script
security could be achieved. Consider the following configuration of the `GroovyCompilerGremlinPlugin`:
[source,yaml]
scriptEngines: { gremlin-groovy: { plugins: { org.apache.tinkerpop.gremlin.server.jsr223.GremlinServerGremlinPlugin: {}, org.apache.tinkerpop.gremlin.tinkergraph.jsr223.TinkerGraphGremlinPlugin: {} org.apache.tinkerpop.gremlin.groovy.jsr223.GroovyCompilerGremlinPlugin: {enableThreadInterrupt: true, compilation: COMPILE_STATIC, extensions: org.apache.tinkerpop.gremlin.groovy.jsr223.customizer.SimpleSandboxExtension}, org.apache.tinkerpop.gremlin.jsr223.ImportGremlinPlugin: {classImports: [java.lang.Math], methodImports: [java.lang.Math#*]}, org.apache.tinkerpop.gremlin.jsr223.ScriptFileGremlinPlugin: {files: [scripts/empty-sample-secure.groovy]}}}}
This configuration uses the `SimpleSandboxExtension`, which blocks calls to methods on the `System` class, thereby preventing someone from remotely killing the server: [source,groovy]
gremlin> :> System.exit(0) Script8.groovy: 1: [Static type checking] - Not authorized to call this method: java.lang.System#exit(int) @ line 1, column 1. System.exit(0) ^
1 error
The `SimpleSandboxExtension` is by no means a "complete" implementation protecting against all manner of nefarious scripts, but it does provide an example for how such a capability might be implemented. A slightly more advanced example is offered in the `FileSandboxExtension` which uses a configuration file to allow certain classes and methods. The configuration file is YAML-based and an example is presented as follows: [source,yaml]
autoTypeUnknown: true methodWhiteList: - java\.lang\.Boolean.* - java\.lang\.Byte.* - java\.lang\.Character.* - java\.lang\.Double.* - java\.lang\.Enum.* - java\.lang\.Float.* - java\.lang\.Integer.* - java\.lang\.Long.* - java\.lang\.Math.* - java\.lang\.Number.* - java\.lang\.Object.* - java\.lang\.Short.* - java\.lang\.String.* - java\.lang\.StringBuffer.* - java\.lang\.System#currentTimeMillis\(\) - java\.lang\.System#nanoTime\(\) - java\.lang\.Throwable.* - java\.lang\.Void.* - java\.util\..* - org\.codehaus\.groovy\.runtime\.DefaultGroovyMethods.* - org\.codehaus\.groovy\.runtime\.InvokerHelper#runScript\(java\.lang\.Class,java\.lang\.String\[\]\) - org\.codehaus\.groovy\.runtime\.StringGroovyMethods.* - groovy\.lang\.Script#<init>\(groovy.lang.Binding\) - org\.apache\.tinkerpop\.gremlin\.structure\..* - org\.apache\.tinkerpop\.gremlin\.process\..* - org\.apache\.tinkerpop\.gremlin\.process\.computer\..* - org\.apache\.tinkerpop\.gremlin\.process\.computer\.bulkloading\..* - org\.apache\.tinkerpop\.gremlin\.process\.computer\.clustering\.peerpressure\.* - org\.apache\.tinkerpop\.gremlin\.process\.computer\.ranking\.pagerank\.* - org\.apache\.tinkerpop\.gremlin\.process\.computer\.traversal\..* - org\.apache\.tinkerpop\.gremlin\.process\.traversal\..* - org\.apache\.tinkerpop\.gremlin\.process\.traversal\.dsl\.graph\..* - org\.apache\.tinkerpop\.gremlin\.process\.traversal\.engine\..* - org\.apache\.tinkerpop\.gremlin\.server\.util\.LifeCycleHook.* staticVariableTypes: graph: org.apache.tinkerpop.gremlin.structure.Graph g: org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.GraphTraversalSource
There are three keys in this configuration file that control different aspects of the sandbox: . `autoTypeUnknown` - When set to `true`, unresolved variables are typed as `Object`. . `methodWhiteList` - A white list of classes and methods that follow a regex pattern which can then be matched against method descriptors to determine if they can be executed. The method descriptor is the fully-qualified class name of the method, its name and parameters. For example, `Math.ceil` would have a descriptor of `java.lang.Math#ceil(double)`. . `staticVariableTypes` - A list of variables that will be used in the `ScriptEngine` for which the types are always known. In the above example, the variable "graph" will always be bound to a `Graph` instance. At Gremlin Server startup, the `FileSandboxExtension` looks in the root of Gremlin Server installation directory for a file called `sandbox.yaml` and configures itself. To use a file in a different location set the `gremlinServerSandbox` system property to the location of the file (e.g. `-DgremlinServerSandbox=conf/my-sandbox.yaml`). A final thought on the topic of `GroovyCompilerGremlinPlugin` implementation is that it is not just for "security" (though it is demonstrated in that capacity here). It can be used for a variety of features that can fine tune the Groovy compilation process. Read more about compilation customization in the link:http://docs.groovy-lang.org/latest/html/documentation/#compilation-customizers[Groovy Documentation]. === Best Practices The following sections define best practices for working with Gremlin Server. ==== Tuning image:gremlin-handdrawn.png[width=120,float=right] Tuning Gremlin Server for a particular environment may require some simple trial-and-error, but the following represent some basic guidelines that might be useful: * Gremlin Server defaults to a very modest maximum heap size. Consider increasing this value for non-trivial uses. Maximum heap size (`-Xmx`) is defined with the `JAVA_OPTIONS` setting in `gremlin-server.conf`. * TinkerPop tends to discourage the use of link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/recipes/#long-traversals[long traversals] as they can introduce performance problems in some cases and in others simply fail with a `StackOverflowError`. Aside from restructuring the traversal into multiple commands or stream based inserts, it may sometimes make sense to simply increase the stack size of the JVM for Gremlin Server by configuring an `-Xss` setting in `JAVA_OPTIONS` of `gremlin-server.conf`. * If Gremlin Server is processing scripts or lambdas in bytecode requests, consider fine tuning the JVM's handling of the metaspace size. Consider modifying the `-XX:MetaspaceSize`,`-XX:MaxMetaspaceSize`, and related settings given the expected workload. More discussion on this topic can be found in the <<parameterized-scripts,Parameterized Scripts>> Section below. * When configuring the size of `threadPoolWorker` start with the default of `1` and increment by one as needed to a maximum of `2*number of cores`. * The "right" size of the `gremlinPool` setting is somewhat dependent on the type of requests that will be processed by Gremlin Server. As requests arrive to Gremlin Server they are decoded and queued to be processed by threads in this pool. When this pool is exhausted of threads, Gremlin Server will continue to accept incoming requests, but the queue will continue to grow. If left to grow too large, the server will begin to slow. When tuning around this setting, consider whether the bulk of the scripts being processed will be "fast" or "slow", where "fast" generally means being measured in the low hundreds of milliseconds and "slow" means anything longer than that. * Requests that are "slow" can really hurt Gremlin Server if they are not properly accounted for. Since these requests block a thread until the job is complete or successfully interrupted, lots of long-run requests will eventually consume the `gremlinPool` preventing other requests from getting processed from the queue. ** To limit the impact of this problem, consider properly setting the `evaluationTimeout` to something "sane". In other words, test the traversals being sent to Gremlin Server and determine the maximum time they take to evaluate and iterate over results, then set the timeout value accordingly. Also, consider setting a shorter global timeout for requests and then use longer per-request timeouts for those specific ones that might execute at a longer rate. ** Note that `evaluationTimeout` can only attempt to interrupt the evaluation on timeout. It allows Gremlin Server to "ignore" the result of that evaluation, which means the thread in the `gremlinPool` that did the evaluation may still be consumed after the timeout if interruption does not succeed on the thread. * When using sessions, there are different options to consider depending on the `Channelizer` implementation being used: ** `WebSocketChannelizer` and `WsAndHttpChannelizer` - Both of these channelizers use the `gremlinPool` only for sessionless requests and construct a single threaded pool for each session created. In this way, these channelizers tend to optimize sessions to be long-lived. For short-lived sessions, which may be typical when using bytecode based remote transactions, quickly creating and destroying these sessions can be expensive. It is likely that there will be increased garbage collection times and frequency as well as a general increase in overall server processing. ** `UnifiedChannelizer` - The threads of the `gremlinPool` are used to service both sessions and sessionless requests. With a common thread pool, this channelizer is a better choice when using lots of short-lived sessions as compared to `WebSocketChannelizer` and `WsAndHttpChannelizer`, because there is less cost in starting and stopping sessions. It is important though to understand the expected workload for the server and plan the size accordingly to ensure that the server does not need to wait for an extended period of time for a thread to be available to process the queue of incoming requests. * Graph element serialization for `Vertex` and `Edge` can be expensive, as their data structures are complex given the possible existence of multi-properties and meta-properties. When returning data from Gremlin Server only return the data that is required. For example, if only two properties of a `Vertex` are needed then simply return the two rather than returning the entire `Vertex` object itself. Even with an entire `Vertex`, it is typically much faster to issue the query as `g.V(1).elementMap()` than `g.V(1)`, as the former returns a `Map` of the same data as a `Vertex`, but without all the associated structure which can slow the response. * Gremlin Server writes responses to a buffer held in direct memory prior to flushing them to the TCP socket. If the logs show `OutOfDirectMemoryError`, particularly when the `channels.write-pauses` <<metrics,metric>> is high, it is likely caused by this buffer being filled. The buffer can fill when clients are slow to consume results being sent to them (e.g. network problems, underpowered client instances, etc.). Gremlin Server will attempt to throttle the speed at which the buffer gets filled by pausing writes for any channel that exceeds its allowed buffer space allotment as determined by the `writeBufferHighWaterMark` and `writeBufferLowWaterMark` described in the <<server-configuring,Server Configuration Section>>. Pauses obviously increase latency, but do so for benefit of server stability in continuing to serve channels that have clients without issue consuming the results. ** Write pauses are generally considered a natural part of server operations, though a continuous amount of pausing means that threads used for query execution are tied up and are therefore preventing the processing of other requests. As a result, requests may begin to queue which further adds to server load and potential latency. Increasing the `writeBufferHighWaterMark` and `writeBufferLowWaterMark` settings could allow the server to delay pauses at the expense of direct memory and therefore allow more requests to be handled by freeing those query execution threads. ** Client applications should be selective in their retries. Quickly resending a query that triggered an `OutOfDirectMemoryError` without giving the server time to recover will just further burden a taxed system. Even retry systems that use exponential back-off may not be suitable for these cases as early retries may land too quickly and therefore just queue another heavy request. ** Consider the shape of query results as they can have an impact on server performance. The "shape" refers to the form of the result given the query. For example, `g.V()` and `g.V().fold()` both return the same results (i.e. all the vertices in the graph) but the former returns them one at a time in a stream and the latter collects them all in memory in a `List` and then returns the one `List` result. Writing queries in ways that allow results that can stream (only applies for websockets) is preferable and will allow the server to perform better. Another aspect of "shape" can come into play when returning data of individual graph elements. For example, the `g.V()` form of query will stream, but if each `Vertex` returned has lots of properties (e.g. properties with large strings or heavy blobs), this could trigger scenarios where each streamed batch immediately exceeds `writeBufferHighWaterMark`. Simply exceeding the `writeBufferHighWaterMark` may not trigger a pause as the server may quickly flush the buffer before the next batch, but one could see how easily a write pause could be triggered in that state. It could make sense to configure a smaller `batchSize` for queries results that have heavy individual objects in them as that would reduce the byte size of the batch and allow buffer flushes to happen more often (though that may be a cost in and of itself). [[parameterized-scripts]] ==== Parameterized Scripts image:gremlin-parameterized.png[width=150,float=left] If using the standard `GremlinGroovyScriptEngine` in Gremlin Server, it is imperative to use script parameterization. Period. There are at least two good reasons for doing so: script caching and protection from "Gremlin injection" (conceptually the same as the notion of SQL injection). IMPORTANT: It is possible to use the `GremlinLangScriptEngine` in Gremlin Server as opposed to the `GremlinGroovyScriptEngine`. The former makes use of `gremlin-language` and its ANTLR grammar for parsing Gremlin scripts. This processing is different from the processing performed by Groovy and therefore spares users from the concerns of this section. When considering parameterization, users should also consider the graph database they are using to determine if it has native mechanisms that preclude the need for parameterization. With respect to caching, Gremlin Server caches all scripts that are passed to it. The cache is keyed based on the a hash of the script. Therefore `g.V(1)` and `g.V(2)` will be recognized as two separate scripts in the cache. If that script is parameterized to `g.V(x)` where `x` is passed as a parameter from the client, there will be no additional compilation cost for future requests on that script. Compilation of a script should be considered "expensive" and avoided when possible. IMPORTANT: The parameterized script of `g.V(x)` is keyed in the cache differently than `g.V(y)` or even `g.V( x )`. Scripts must be exact string matches for recompilation to be avoided. [source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect();
Map<String,Object> params = new HashMap<>(); params.put("x",4); client.submit("[1,2,3,x]", params);
The more parameters that are used in a script the more expensive the compilation step becomes. Gremlin Server has a `OpProcessor` setting called `maxParameters`, which is mentioned in the <<opprocessor-configurations,OpProcessor Configuration>> section. It controls the maximum number of parameters that can be passed to the server for script evaluation purposes. Use of this setting can prevent accidental long run compilations, which individually are not terribly oppressive to the server, but taken as a group under high concurrency would be considered detrimental. On the topic of Gremlin injection, note that it is possible to take advantage of Gremlin scripts in the same fashion as SQL scripts that are submitted as strings. When using string building patterns for queries without proper input scrubbing, it would be quite simple to do: [source,java]
String lbl = "person"; String nodeId = "mary').next();g.V().drop().iterate();g.V().has('id', 'thomas"; String query = "g.addV('" + lbl + "').property('identifier','" + nodeId + "')"; client.submit(query);
The above case would `drop()` all vertices in the graph. By using script parameterization, there is a different outcome in that the `nodeId` string is not treated as something executable, but rather as a literal string that just becomes part of the "identifier" for the vertex on insertion: [source,java]
String lbl = "person"; String nodeId = "mary').next();g.V().drop().iterate();g.V().has('id', 'thomas"; String query = "g.addV(lbl).property('identifier',nodeId)";
Map<String,Object> params = new HashMap<>(); params.put("lbl", lbl); params.put("nodeId", nodeId); client.submit(query, params);
Gremlin injection should not be possible with `Bytecode` based traversals - only scripts - because `Bytecode` traversals will treat all arguments as literal values. There is potential for concern if lambda based steps are utilized as they execute arbitrary code, which is string based, but configuring `TraversalSource` instances with `LambdaRestrictionStrategy`, which prevents lambdas all together, using a graph that does not allow lambdas at all, or configuring appropriate <<script-execution,sandbox options>> in Gremlin Server (or such options available to the graph database in use) should each help mitigate problems related to this issue. Scripts create classes which get loaded to the JVM metaspace and to a `Class` cache. For those using script parameterization, a typical application should not generate an overabundance of pressure on these two components of Gremlin Server's memory footprint. On the other hand, it's not too hard to imagine a situation where problems might emerge: * An application use case makes parameterization impossible and therefore all scripts are unique. * There is a bug in an applications parameterization code that is actually instead producing unique scripts. * A long running Gremln Server takes lots of non-parameterized scripts from Gremlin Console or similar tools. In these sorts of cases, Gremlin Server's performance can be affected adversely as without some additional configuration the metaspace will grow indefinitely (possibly along with the general heap) triggering longer and more frequent rounds of garbage collection (GC). Some tuning of JVM settings can help abate this issue. As a first guard against this problem consider setting the `-XX:SoftRefLRUPolicyMSPerMB` to release soft references earlier. The `ScriptEngine` cache for created `Class` objects uses soft references and if the workload expectation is such that cache hits will be low there is little need to keep such references around. Perhaps the more important guards are related to the JVM metaspace. Start by setting the initial size of this space with `-XX:MetaspaceSize`. When this value is exceeded it will trigger a GC round - it is essentially a threshold for GC. The grow of this value can be capped with `-XX:MaxMetaspaceSize` (this value is unlimited by default). In an ideal situation (i.e. parameterization), the `-XX:MetaspaceSize` should have a large enough setting so as to avoid early GC rounds for metaspace, but outside of an ideal world (i.e. non-parameterization) it may not be smart to make this number too large. Making the setting too large (and thus the `-XX:MaxMetaspaceSize` even larger) may trigger longer GC rounds when they inevitably arrive. In addition to those two metaspace settings it may also be useful to consider the following additional options: * `MinMetaspaceFreeRatio` - When the percentage for committed space available for class metadata is less than this value, then the threshold of metaspace GC will be raised, but only if the incremental size of the threshold meets the requirement set by `MinMetaspaceExpansion`. A larger number should make the metaspace grow more aggressively. * `MaxMetaspaceFreeRatio` - When the percentage for committed space available for class metadata is more than this value, then the threshold of metaspace GC will be lowered, but only if the incremental size of the threshold meets the requirement set by `MaxMetaspaceExpansion`. A larger number should reduce the chance of the metaspace shrinking. * `MinMetaspaceExpansion` - The minimum size by which the metaspace is expanded after a metaspace GC round. * `MaxMetaspaceExpansion`` - If the incremental size exceeds `MinMetaspaceExpansion` but less than `MaxMetaspaceExpansion`, then the incremental size is `MaxMetaspaceExpansion`. If the incremental size exceeds `MaxMetaspaceExpansion`, then the incremental size is `MinMetaspaceExpansion` plus the original incremental size. There really aren't any general guidelines for how to initially set these values. Using profiling tools to examine GC trends is likely the best way to understand how a particular workload is affecting the metaspace and its relation to GC. Getting these settings "right" however will help ensure much more predictable Gremlin Server operations. IMPORTANT: A lambda used in a bytecode-based request will be treated as a script, so issues related to raw script-based requests apply equally well to lambda-bytecode requests. ==== Properties of Elements It was mentioned above at the start of this "Best Practices" section that serialization of graph elements (i.e. `Vertex`, `Edge`, and `VertexProperty`) can be expensive and that it is best to only return the data that is required by the requesting system. This point begs for further clarification as there are a number of ways to use and configure Gremlin Server which might influence its interpretation. To begin to discuss these nuances, first consider the method of making requests to Gremlin Server: script or bytecode. For scripts, that will mean that users are sending string representation of Gremlin to the server directly through a driver over websockets or through the HTTP. For bytecode, users will be utilize a <<gremlin-drivers-variants, Gremlin GLV>> which will construct bytecode for them and submit the request to the server upon iteration of their traversal. In either case, it is important to also consider the method of "detachment". Detachment refers to the manner in which a graph element is disconnected from the graph for purpose of serialization. Depending on the case and configuration, graph elements may be detached with or without properties. Cases where they include properties is generally referred to as "detached elements" and cases where properties are not included are "reference elements". With the type of request and detachment model in mind, it is now possible to discuss how best to consider element properties in relation to them all in concert. By default, Gremlin Server configuration returns all properties. To manage properties for each request you can use the <<configuration-steps-with,with()>> configuration option `materializeProperties` [source,groovy]
g.with('materializeProperties', 'tokens').V()
The `tokens` value for the `materializeProperties` means that only `id` and `label` should be returned. Another option, `all`, can be used to indicate that all properties should be returned and is the default value. In some cases it can be inconvenient to load Elements with properties due to large data size or for compatibility reasons. That can be solved by utilizing `ReferenceElementStrategy` when creating the out-of-the-box `GraphTraversalSource`. As the name suggests, this means that elements will be detached by reference and will therefore not have properties included. The relevant configuration from the Gremlin Server initialization script looks like this: [source,groovy]
globals << [g : traversal().with(graph).withStrategies(ReferenceElementStrategy)]
This configuration is global to Gremlin Server and therefore all methods of connection will always return elements without properties. If this strategy is not included, then elements will be returned with properties. Ultimately, the detachment model should have little impact to Gremlin usage if the best practice of specifying only the data required by the application is adhered to. The best practice of requesting only the data the application needs: [source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect(); ResultSet results = client.submit("g.V().hasLabel('person').elementMap('name')");
GraphTraversalSource g = traversal().with('conf/remote-graph.properties'); List<Vertex> results = g.V().hasLabel("person").elementMap('name').toList();
Both of the above requests return a list of `Map` instances that contain the `id`, `label` and the "name" property. *Compatibility* *It is not recommended to use 3.6.x or below driver versions with 3.7.x or above Gremlin Server*, as some older drivers do not construct graph elements with properties and thus are not designed to handle the returned properties by default; however, compatibility can be achieved by configuring `ReferenceElementStrategy` in the server such that properties are not returned. Per-request configuration option `materializeProperties` is not supported older driver versions. Also note that older drivers of different language variants will handle incoming properties differently with different serializers used. Drivers using `GraphSON` serializers will remain compatible, but may encounter deserialization errors with `GraphBinary`. Below is a table documenting GLV behaviors using `GraphBinary` when properties are returned by the default 3.7.x server, as well as if `ReferenceElementStrategy` is configured (i.e. mimic the behavior of a 3.6.x server). This can be observed with the results of `g.V().next()`. Note that only `gremlin-driver` and `gremlin-javacript` have the `properties` attribute in the Element objects, all other GLVs only have `id` and `label`. [cols="1,1,1"] |=== |3.6.x drivers with `GraphBinary` |Behavior with default 3.7.x Server | Behavior with `ReferenceElementStrategy` |`gremlin-driver` |Properties returned as empty iterator |Properties returned as empty iterator |`gremlin-dotnet` |Skips properties in Elements |Skips properties in Elements |`gremlin-javascript` |Deserialization error |Properties returned as empty list |`gremlin-python` |Deserialization error |Skips properties in Elements |`gremlin-go` |Deserialization error |Skips properties in Elements |=== TIP: Consider utilizing `ReferenceElementStrategy` whenever creating a `GraphTraversalSource` in Java to ensure the most portable Gremlin. NOTE: For those interested, please see link:https://lists.apache.org/thread.html/e959e85d4f8b3d46d281f2742a6e574c7d27c54bfc52f802f7c04af3%40%3Cdev.tinkerpop.apache.org%3E[this post] to the TinkerPop dev list which outlines the full history of this issue and related concerns. [[gremlin-server-cache]] ==== Cache Management If Gremlin Server processes a large number of unique scripts, the global function cache will grow beyond the memory available to Gremlin Server and an `OutOfMemoryError` will loom. Script parameterization goes a long way to solving this problem and running out of memory should not be an issue for those cases. If it is a problem or if there is no script parameterization due to a given use case (perhaps using with use of <<sessions,sessions>>), it is possible to better control the nature of the global function cache from the client side, by issuing scripts with a parameter to help define how the garbage collector should treat the references. The parameter is called `#jsr223.groovy.engine.keep.globals` and has four options: * `hard` - available in the cache for the life of the JVM (default when not specified). * `soft` - retained until memory is "low" and should be reclaimed before an `OutOfMemoryError` is thrown. * `weak` - garbage collected even when memory is abundant. * `phantom` - removed immediately after being evaluated by the `ScriptEngine`. By specifying an option other than `hard`, an `OutOfMemoryError` in Gremlin Server should be avoided. Of course, this approach will come with the downside that functions could be garbage collected and thus removed from the cache, forcing Gremlin Server to recompile later if that script is later encountered. [source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect();
Map<String,Object> params = new HashMap<>(); params.put("#jsr223.groovy.engine.keep.globals", "soft"); client.submit("def addItUp(x,y){x+y}", params);
In cases where maintaining the expense of the global function cache is unecessary this cache can be disabled with the `globalFunctionCacheEnabled` configuration on the `GroovyCompilerGremlinPlugin`. Gremlin Server also has a "class map" cache which holds compiled scripts which helps avoid recompilation costs on future requests. This cache can be tuned in the Gremlin Server configuration with the `GroovyCompilerGremlinPlugin` in the following fashion: [source,yaml]
scriptEngines: { gremlin-groovy: { plugins: { … org.apache.tinkerpop.gremlin.groovy.jsr223.GroovyCompilerGremlinPlugin: {classMapCacheSpecification: "initialCapacity=1000,maximumSize=10000"}, …}
The specifics for this comma delimited format can be found link:https://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.6.2/com/github/benmanes/caffeine/cache/CaffeineSpec.html[here]. By default, the cache is set to `softValues` which means they are garbage collected in a globally least-recently-used manner as memory gets low. For production systems, it is likely that a more predictable strategy be taken as shown above with the use of the `maximumSize`. [[sessions]] ==== Considering Sessions The preferred approach for issuing script-based requests to Gremlin Server is to do so in a sessionless manner. The concept of "sessionless" refers to a request that is completely encapsulated within a single transaction, such that the script in the request starts with a new transaction and ends with a closed transaction. Sessionless requests have automatic transaction management handled by Gremlin Server, thus automatically opening and closing transactions as previously described. The downside to the sessionless approach is that the entire script to be executed must be known at the time of submission so that it can all be executed at once. This requirement makes it difficult for some use cases where more control over the transaction is desired. For such use cases, Gremlin Server supports sessions. With sessions, the user is in complete control of the start and end of the transaction. This feature comes with some additional expense to consider: * Initialization scripts will be executed for each session created so any expense related to them will be established each time a session is constructed. * There will be one script cache per session, which obviously increases memory requirements. The cache is not shared, so as to ensure that a session has isolation from other session environments. As a result, if the same script is executed in each session the same compilation cost will be paid for each session it is executed in. * Each session will require its own thread pool with a single thread in it - this ensures that transactional boundaries are managed properly from one request to the next. * If there are multiple Gremlin Server instances, communication from the client to the server must be bound to the server that the session was initialized in. Gremlin Server does not share session state as the transactional context of a `Graph` is bound to the thread it was initialized in. To connect to a session with Java via the `gremlin-driver`, it is necessary to create a `SessionedClient` from the `Cluster` object: [source,java]
Cluster cluster = Cluster.open(); <1> Client client = cluster.connect("sessionName"); <2>
<1> Opens a reference to `localhost` as <<gremlin-java,previously shown>>. <2> Creates a `SessionedClient` given the configuration options of the Cluster. The `connect()` method is given a `String` value that becomes the unique name of the session. It is often best to simply use a `UUID` to represent the session. It is also possible to have Gremlin Server manage the transactions as is done with sessionless requests. The user is in control of enabling this feature when creating the `SessionedClient`: [source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect("sessionName", true);
Specifying `true` to the `connect()` method signifies that the `client` should make each request as one encapsulated in a transaction. With this configuration of `client` there is no need to close a transaction manually. When using this mode of the `SessionedClient` it is important to recognize that global variable state for the session is not rolled-back on failure depending on where the failure occurs. For example, sending the following script would create a variable "x" in global session scope that would be accessible on the next request: [source,groovy] x = 1 However, sending this script which explicitly throws an exception: [source,groovy] y = 2 throw new RuntimeException() will result in an obvious failure during script evaluation and "y" will not be available to the next request. The complication arises where the script evaluates successfully, but fails during result iteration or serialization. For example, this script: [source,groovy] a = 1 g.addV() would successfully evaluate and return a `Traversal`. The variable "a" would be available on the next request. However, if there was a failure in transaction management on the call to `commit()`, "a" would still be available to the next request. To avoid unexpected problems with state in relation to errors in sessions, it is best to follow these guidelines: * Do not re-use session identifiers. Simply use a new UUID for each session. * On exception, be sure to call `close()` on the `Client` and create a new session. * While you may submit parallel asynchronous requests to a session, it may not make sense to do so because they are simply executed serially as they arrive to the session. A failed asynchronous request could leave an invalid state in the session which may not allow later requests to succeed. Either use synchronous requests only or carefully consider error conditions with asynchronous requests. [source,java]
Client.SessionSettings settings = Client.SessionSettings.build().maintainStateAfterException(true).create(); Client session = cluster.connect(Client.Settings.build().useSession(settings).create());
A session is a "heavier" approach to the simple "request/response" approach of sessionless requests, but is sometimes necessary for a given use case. [[considering-transactions]] ==== Considering Transactions Gremlin Server performs automated transaction handling for "sessionless" requests (i.e. no state between requests) and for "in-session" requests with that feature enabled. It will automatically commit or rollback transactions depending on the success or failure of the request. IMPORTANT: Understand the transactional capabilities of the graph configured in Gremlin Server when using sessions. For example, a basic `TinkerGraph` in its non-transactional form won't be able to rollback a failed traversal, therefore it is quite possible to get partial updates if the first part of a traversal succeeds and the rest fails. Another aspect of Transaction Management that should be considered is the usage of the `strictTransactionManagement` setting. It is `false` by default, but when set to `true`, it forces the user to pass `aliases` for all requests. The aliases are then used to determine which graphs will have their transactions closed for that request. Running Gremlin Server in this configuration should be more efficient when there are multiple graphs being hosted as Gremlin Server will only close transactions on the graphs specified by the `aliases`. Keeping this setting `false`, will simply have Gremlin Server close transactions on all graphs for every request. [[considering-state]] ==== Considering State With HTTP and any sessionless requests, there is no variable state maintained between requests. Therefore, when <<connecting-via-console,connecting with the console>>, for example, it is not possible to create a variable in one command and then expect to access it in the next: [source,groovy]
gremlin> :remote connect tinkerpop.server conf/remote.yaml =⇒Configured localhost/127.0.0.1:8182 gremlin> :> x = 2 =⇒2 gremlin> :> 2 + x No such property: x for class: Script4 Display stack trace? [yN] n
The same behavior would be seen with HTTP or when using sessionless requests through one of the Gremlin Server drivers. If having this behavior is desireable, then <<sessions,consider sessions>>. There is an exception to this notion of state not existing between requests and that is globally defined functions. All functions created via scripts are global to the server. [source,groovy]
gremlin> :> def subtractIt(int x, int y) { x - y } =⇒null gremlin> :> subtractIt(8,7) =⇒1
If this behavior is not desirable there are several options. A first option would be to consider using sessions. Each session gets its own `ScriptEngine`, which maintains its own isolated cache of global functions, whereas sessionless requests uses a single function cache. A second option would be to define functions as closures: [source,groovy]
gremlin> :> multiplyIt = { int x, int y → x * y } =⇒Script7$_run_closure1@6b24f3ab gremlin> :> multiplyIt(7, 8) No signature of method: org.apache.tinkerpop.gremlin.groovy.jsr223.GremlinGroovyScriptEngine.multiplyIt() is applicable for argument types: (java.lang.Integer, java.lang.Integer) values: [7, 8] Display stack trace? [yN]
When the function is declared this way, the function is viewed by the `ScriptEngine` as a variable rather than a global function and since sessionless requests don't maintain state, the function is forgotten for the next request. A final option would be to manage the `ScriptEngine` cache manually: [source,bourne]
$ curl -X POST -d "{\"gremlin\":\"def divideIt(int x, int y){ x / y }\",\"bindings\":{\"#jsr223.groovy.engine.keep.globals\":\"phantom\"}}" "http://localhost:8182" {"requestId":"97fe1467-a943-45ea-8fd6-9e889a6c9381","status":{"message":"","code":200,"attributes":{}},"result":{"data":[null],"meta":{}}} $ curl -X POST -d "{\"gremlin\":\"divideIt(8, 2)\"}" "http://localhost:8182" {"message":"Error encountered evaluating script: divideIt(8, 2)"}
In the above HTTP-based requests, the bindings contain a special parameter that tells the `ScriptEngine` cache to immediately forget the script after execution. In this way, the function does not end up being globally available. [[request-retry]] ==== Request Retry The server has the ability to instruct the client that an error condition is transient and that the client should simply retry the request later. In the event a client detects a `ResponseStatusCode` of `SERVER_ERROR_TEMPORARY`, which is error code `596`, the client may choose to retry that request. Note that drivers do not have the ability to automatically retry and that it is up to the application to provide such logic. [[gremlin-server-docker-image]] === Docker Image The Gremlin Server can also be started as a link:https://hub.docker.com/r/tinkerpop/gremlin-server/[Docker image]: [source,text]
$ docker run tinkerpop/gremlin-server:3.8.0-SNAPSHOT [INFO] GremlinServer - \,,,/ (o o) -----oOOo-(3)-oOOo-----
[INFO] GremlinServer - Configuring Gremlin Server from conf/gremlin-server.yaml … [INFO] GremlinServer$1 - Gremlin Server configured with worker thread pool of 1, gremlin pool of 4 and boss thread pool of 1. [INFO] GremlinServer$1 - Channel started at port 8182.
By default, Gremlin Server listens on port 8182. So that port needs to be exposed if it should be reachable on the host: [source,bash]
$ docker run -p 8182:8182 tinkerpop/gremlin-server:3.8.0-SNAPSHOT
Arguments provided with `docker run` are forwarded to the script that starts Gremlin Server. This allows for example to use an alternative config file: [source,bash]
$ docker run tinkerpop/gremlin-server:3.8.0-SNAPSHOT conf/gremlin-server-secure.yaml
[[gremlin-plugins]]
== Gremlin Plugins
image:gremlin-plugin.png[width=125]
Plugins provide a way to expand the features of Gremlin Console and Gremlin Server. The following sections describe
the plugins that are available directly from TinkerPop. Please see the
link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#gremlin-plugins[Provider Documentation] for information on
how to develop custom plugins.
[[credentials-plugin]]
=== Credentials Plugin
image:gremlin-server.png[width=200,float=left] xref:gremlin-server[Gremlin Server] supports an authentication model
where user credentials are stored inside of a `Graph` instance. This database can be managed with the
xref:credentials-dsl[Credentials DSL], which can be installed in the console via the Credentials Plugin. This plugin
is packaged with the console, but is not enabled by default.
[source,groovy]
gremlin> :plugin use tinkerpop.credentials
==>tinkerpop.credentials activated
This plugin imports the appropriate classes for managing the credentials graph.
[[gephi-plugin]]
=== Gephi Plugin
image:gephi-logo.png[width=200, float=left] link:http://gephi.org/[Gephi] is an interactive visualization,
exploration, and analysis platform for graphs. The link:https://gephi.org/plugins/#/plugin/graphstreaming[Graph Streaming]
plugin for Gephi provides an API that can be leveraged to stream graph data to a running Gephi application. The Gephi
plugin for Gremlin Console utilizes this API to allow for graph and traversal visualization.
IMPORTANT: These instructions have been tested with Gephi 0.9.2 and Graph Streaming plugin 1.0.3.
The following instructions assume that Gephi has been download and installed. It further assumes that the Graph
Streaming plugin has been installed (`Tools > Plugins`). The following instructions explain how to visualize a
`Graph` and `Traversal`.
In Gephi, create a new project with `File > New Project`. In the lower left view, click the "Streaming" tab, open the
Master drop down, and right click `Master Server > Start` which starts the Graph Streaming server in Gephi and by
default accepts requests at `http://localhost:8080/workspace1`:
image::gephi-start-server.png[width=800]
IMPORTANT: The Gephi Streaming Plugin doesn't detect port conflicts and will appear to start the plugin successfully
even if there is something already active on that port it wants to connect to (which is 8080 by default). Be sure
that there is nothing running on the port before Gephi will be using before starting the plugin. Failing to do
this produce behavior where the console will appear to submit requests to Gephi successfully but nothing will
render.
WARNING: Do not skip the `File > New Project` step as it may prevent a newly started Gephi application from fully
enabling the streaming tab.
Start the xref:gremlin-console[Gremlin Console] and activate the Gephi plugin:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-27" type="radio" name="radio-set-1761594617-27" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-27" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-28" type="radio" name="radio-set-1761594617-27" class="tab-selector-2" />
<label for="tab-1761594617-28" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :plugin use tinkerpop.gephi =⇒tinkerpop.gephi activated gremlin> graph = TinkerFactory.createModern() =⇒tinkergraph[vertices:6 edges:6] gremlin> :remote connect tinkerpop.gephi =⇒Connection to Gephi - http://localhost:8080/workspace1 with stepDelay:1000, startRGBColor:[0.0, 1.0, 0.5], colorToFade:g, colorFadeRate:0.7, startSize:10.0,sizeDecrementRate:0.33 gremlin> :> graph =⇒tinkergraph[vertices:6 edges:6] =⇒false
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:plugin use tinkerpop.gephi graph = TinkerFactory.createModern() :remote connect tinkerpop.gephi :> graph
++++
</div>
</div>
</section>
++++
The above Gremlin session activates the Gephi plugin, creates the "modern" `TinkerGraph`, uses the `:remote` command
to setup a connection to the Graph Streaming server in Gephi (with default parameters that will be explained below),
and then uses `:submit` which sends the vertices and edges of the graph to the Gephi Streaming Server. The resulting
graph appears in Gephi as displayed in the left image below.
image::gephi-graph-submit.png[width=800]
NOTE: Issuing `:> graph` again will clear the Gephi workspace and then re-write the graph. To manually empty the
workspace do `:> clear`.
Now that the graph is visualized in Gephi, it is possible to link:https://gephi.github.io/users/tutorial-layouts/[apply a layout algorithm],
change the size and/or color of vertices and edges, and display labels/properties of interest. Further information
can be found in Gephi's tutorial on link:https://gephi.github.io/users/tutorial-visualization/[Visualization].
After applying the Fruchterman Reingold layout, increasing the node size, decreasing the edge scale, and displaying
the id, name, and weight attributes the graph looks as displayed in the right image above.
Visualization of a `Traversal` has a different approach as the visualization occurs as the `Traversal` is executing,
thus showing a real-time view of its execution. A `Traversal` must be "configured" to operate in this format and for
that it requires use of the `visualTraversal` option on the `config` function of the `:remote` command:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-29" type="radio" name="radio-set-1761594617-29" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-29" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-30" type="radio" name="radio-set-1761594617-29" class="tab-selector-2" />
<label for="tab-1761594617-30" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote config visualTraversal graph //// <1> =⇒Connection to Gephi - http://localhost:8080/workspace1 with stepDelay:1000, startRGBColor:[0.0, 1.0, 0.5], colorToFade:g, colorFadeRate:0.7, startSize:10.0,sizeDecrementRate:0.33 gremlin> traversal = vg.V(2).in().out('knows'). has('age',gt(30)).outE('created'). has('weight',gt(0.5d)).inV();[] //// <2> gremlin> :> traversal //// <3> =⇒v[5] =⇒false
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote config visualTraversal graph //// <1> traversal = vg.V(2).in().out('knows'). has('age',gt(30)).outE('created'). has('weight',gt(0.5d)).inV();[] //// <2> :> traversal <3>
++++
</div>
</div>
</section>
++++
<1> Configure a "visual traversal" from your "graph" - this must be a `Graph` instance. This command will create a
new `TraversalSource` called "vg" that must be used to visualize any spawned traversals in Gephi.
<2> Define the traversal to be visualized. Note that ending the line with `;[]` simply prevents iteration of
the traversal before it is submitted.
<3> Submit the `Traversal` to visualize to Gephi.
When the `:>` line is called, each step of the `Traversal` that produces or filters vertices generates events to
Gephi. The events update the color and size of the vertices at that step with `startRGBColor` and `startSize`
respectively. After the first step visualization, it sleeps for the configured `stepDelay` in milliseconds. On the
second step, it decays the configured `colorToFade` of all the previously visited vertices in prior steps, by
multiplying the current `colorToFade` value for each vertex with the `colorFadeRate`. Setting the `colorFadeRate`
value to `1.0` will prevent the color decay. The screenshots below show how the visualization evolves over the four
steps:
image::gephi-traversal.png[width=1200]
To get a sense of how the visualization configuration parameters affect the output, see the example below:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-31" type="radio" name="radio-set-1761594617-31" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-31" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-32" type="radio" name="radio-set-1761594617-31" class="tab-selector-2" />
<label for="tab-1761594617-32" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> :remote config startRGBColor [0.0,0.3,1.0] =⇒Connection to Gephi - http://localhost:8080/workspace1 with stepDelay:1000, startRGBColor:[0.0, 0.3, 1.0], colorToFade:g, colorFadeRate:0.7, startSize:10.0,sizeDecrementRate:0.33 gremlin> :remote config colorToFade b =⇒Connection to Gephi - http://localhost:8080/workspace1 with stepDelay:1000, startRGBColor:[0.0, 0.3, 1.0], colorToFade:b, colorFadeRate:0.7, startSize:10.0,sizeDecrementRate:0.33 gremlin> :remote config colorFadeRate 0.5 =⇒Connection to Gephi - http://localhost:8080/workspace1 with stepDelay:1000, startRGBColor:[0.0, 0.3, 1.0], colorToFade:b, colorFadeRate:0.5, startSize:10.0,sizeDecrementRate:0.33 gremlin> :> traversal =⇒false
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
:remote config startRGBColor [0.0,0.3,1.0] :remote config colorToFade b :remote config colorFadeRate 0.5 :> traversal
++++
</div>
</div>
</section>
++++
image::gephi-traversal-config.png[width=400]
The visualization configuration above starts with a blue color now (most recently visited), fading the blue color
(so that dark green remains on oldest visited), and fading the blue color more quickly so that the gradient from dark
green to blue across steps has higher contrast. The following table provides a more detailed description of the
Gephi plugin configuration parameters as accepted via the `:remote config` command:
[width="100%",cols="3,10,^2",options="header"]
|=========================================================
|Parameter |Description |Default
|workspace |The name of the workspace that your Graph Streaming server is started for. |workspace1
|host |The host URL where the Graph Streaming server is configured for. |localhost
|port |The port number of the URL that the Graph Streaming server is listening on. |8080
|sizeDecrementRate |The rate at which the size of an element decreases on each step of the visualization. |0.33
|stepDelay |The amount of time in milliseconds to pause between step visualizations. |1000
|startRGBColor |A size 3 float array of RGB color values which define the starting color to update most recently visited nodes with. |[0.0,1.0,0.5]
|startSize |The size an element should be when it is most recently visited. |20
|colorToFade |A single char from the set `{r,g,b,R,G,B}` determining which color to fade for vertices visited in prior steps |g
|colorFadeRate |A float value in the range `(0.0,1.0]` which is multiplied against the current `colorToFade` value for prior vertices; a `1.0` value effectively turns off the color fading of prior step visited vertices |0.7
|visualTraversal |Creates a `TraversalSource` variable in the Console named `vg` which can be used for visualizing traversals. This configuration option takes two parameters. The first is required and is the name of the `Graph` instance variable that will generate the `TraversalSource`. The second parameter is the variable name that the `TraversalSource` should have when referenced in the Console. If left unspecified, this value defaults to `vg`. |vg
|=========================================================
NOTE: This plugin is typically only useful to the Gremlin Console and is enabled in the there by default.
The instructions above assume that the `Graph` instance being visualized is local to the Gremlin Console. It makes that
assumption because the Gephi plugin requires a locally held `Graph`. If the intent is to visualize a `Graph` instance
hosted in Gremlin Server or a TinkerPop-enabled graph that can only be connected to in a "remote" fashion, then it
is still possible to use the Gephi plugin, but the requirement for a locally held `Graph` remains the same. To use
the Gephi plugin in these situations simply use <<subgraph-step,subgraph()-step>> to extract the portion of the remote
graph that will be visualized. Use of that step will return a `TinkerGraph` instance to the Gremlin Console at which
point it can be used locally with the Gephi plugin. The following example demonstrates the general steps:
[source,text]
gremlin> :remote connect tinkerpop.server conf/remote-objects.yaml <1> … gremlin> :> g.E().hasLabel('knows').subgraph('subGraph').cap('subGraph') <2> … gremlin> graph = result[0].object <3> …
<1> Be sure to connect with a serializer configured to return objects and not their `toString()` representation which is discussed in more detail in the <<connecting-via-console, Connecting Via Console>> Section. <2> Use the `:>` command to subgraph the remote graph as needed. <3> The `TinkerGraph` of that previous traversal can be found in the `result` object and now that the `Graph` is local to Gremlin Console it can be used with Gephi as shown in the prior instruction set. [[graph-plugins]] === Graph Plugins This section does not refer to a specific Gremlin Plugin, but a class of them. Graph Plugins are typically created by graph providers to make it easy to integrate their graph systems into Gremlin Console and Gremlin Server. As TinkerPop provides two reference `Graph` implementations in <<tinkergraph-gremlin,TinkerGraph>> and <<neo4j-gremlin,Neo4j>>, there is also one Gremlin Plugin for each of them. The TinkerGraph plugin is installed and activated in the Gremlin Console by default and the sample configurations that are supplied with the Gremlin Server distribution include the `TinkerGraphGremlinPlugin` as part of the default setup. If using Neo4j, however, the plugin must be installed manually. Instructions for doing so can be found in the <<neo4j-gremlin,Neo4j>> section. [[hadoop-plugin]] === Hadoop Plugin image:hadoop-logo-notext.png[width=100,float=left] The Hadoop Plugin installs as part of `hadoop-gremlin` and provides a number of imports and utility functions to the environment within which it is used. Those classes and functions provide the basis for supporting <<graphcomputer,OLAP based traversals>> with Gremlin. This plugin is defined in greater detail in the <<hadoop-gremlin,Hadoop-Gremlin>> section. [[server-plugin]] === Server Plugin image:gremlin-server.png[width=200,float=left] xref:gremlin-server[Gremlin Server] remotely executes Gremlin scripts that are submitted to it. The Server Plugin provides a way to submit scripts to Gremlin Server for remote processing. Read more about the plugin and how it works in the Gremlin Server section on <<connecting-via-console,Connecting via Console>>. NOTE: This plugin is typically only useful to the Gremlin Console and is enabled in the there by default. The Server Plugin for remoting with the Gremlin Console should not be confused with a plugin of similar name that is used by the server. `GremlinServerGremlinPlugin` is typically only configured in Gremlin Server and provides a number of imports that are required for writing <<starting-gremlin-server,initialization scripts>>. [[spark-plugin]] === Spark Plugin image:spark-logo.png[width=175,float=left] The Spark Plugin installs as part of `spark-gremlin` and provides a number of imports and utility functions to the environment within which it is used. Those classes and functions provide the basis for supporting <<graphcomputer,OLAP based traversals>> using link:http://spark.apache.org[Spark]. This plugin is defined in greater detail in the <<sparkgraphcomputer,SparkGraphComputer>> section and is typically installed in conjuction with the <<hadoop-plugin,Hadoop-Plugin>>. [[sugar-plugin]] === Sugar Plugin image:gremlin-sugar.png[width=120,float=left] In previous versions of Gremlin-Groovy, there were numerous link:http://en.wikipedia.org/wiki/Syntactic_sugar[syntactic sugars] that users could rely on to make their traversals more succinct. Unfortunately, many of these conventions made use of link:http://docs.oracle.com/javase/tutorial/reflect/[Java reflection] and thus, were not performant. In TinkerPop, these conveniences have been removed in support of the standard Gremlin-Groovy syntax being both inline with Gremlin-Java syntax as well as always being the most performant representation. However, for those users that would like to use the previous syntactic sugars (as well as new ones), there is `SugarGremlinPlugin` (a.k.a Gremlin-Groovy-Sugar). IMPORTANT: It is important that the sugar plugin is loaded in a Gremlin Console session prior to any manipulations of the respective TinkerPop objects as Groovy will cache unavailable methods and properties. [source,groovy]
gremlin> :plugin use tinkerpop.sugar =⇒tinkerpop.sugar activated
TIP: When using Sugar in a Groovy class file, add `static { SugarLoader.load() }` to the head of the file. Note that
`SugarLoader.load()` will automatically call `GremlinLoader.load()`.
==== Graph Traversal Methods
If a `GraphTraversal` property is unknown and there is a corresponding method with said name off of `GraphTraversal`
then the property is assumed to be a method call. This enables the user to omit `( )` from the method name. However,
if the property does not reference a `GraphTraversal` method, then it is assumed to be a call to `values(property)`.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-33" type="radio" name="radio-set-1761594617-33" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-33" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-34" type="radio" name="radio-set-1761594617-33" class="tab-selector-2" />
<label for="tab-1761594617-34" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.V //// <1> =⇒v[1] =⇒v[2] =⇒v[3] =⇒v[4] =⇒v[5] =⇒v[6] gremlin> g.V.name //// <2> =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter gremlin> g.V.outE.weight //// <3> =⇒0.4 =⇒0.5 =⇒1.0 =⇒1.0 =⇒0.4 =⇒0.2
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V //// <1> g.V.name //// <2> g.V.outE.weight <3>
++++
</div>
</div>
</section>
++++
<1> There is no need for the parentheses in `g.V()`.
<2> The traversal is interpreted as `g.V().values('name')`.
<3> A chain of zero-argument step calls with a property value call.
==== Range Queries
The `[x]` and `[x..y]` range operators in Groovy translate to `RangeStep` calls.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-35" type="radio" name="radio-set-1761594617-35" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-35" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-36" type="radio" name="radio-set-1761594617-35" class="tab-selector-2" />
<label for="tab-1761594617-36" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.V[0..2] =⇒v[1] =⇒v[2] gremlin> g.V[0..<2] =⇒v[1] gremlin> g.V[2] =⇒v[3]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V[0..2] g.V[0..<2] g.V[2]
++++
</div>
</div>
</section>
++++
==== Logical Operators
The `&` and `|` operator are overloaded in `SugarGremlinPlugin`. When used, they introduce the `AndStep` and `OrStep`
markers into the traversal. See <<and-step,`and()`>> and <<or-step,`or()`>> for more information.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-37" type="radio" name="radio-set-1761594617-37" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-37" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-38" type="radio" name="radio-set-1761594617-37" class="tab-selector-2" />
<label for="tab-1761594617-38" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.V.where(outE('knows') & outE('created')).name //// <1> =⇒marko gremlin> t = g.V.where(outE('knows') | inE('created')).name; null //// <2> =⇒null gremlin> t.toString() =⇒[GraphStep(vertex,[]), TraversalFilterStep([VertexStep(OUT,[knows],edge), OrStep, VertexStep(IN,[created],edge)]), PropertiesStep([name],value)] gremlin> t =⇒marko =⇒lop =⇒ripple gremlin> t.toString() =⇒[TinkerGraphStep(vertex,[]), OrStep([[VertexStep(OUT,[knows],edge)], [VertexStep(IN,[created],edge)]]), PropertiesStep([name],value)]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V.where(outE('knows') & outE('created')).name //// <1> t = g.V.where(outE('knows') | inE('created')).name; null //// <2> t.toString() t t.toString()
++++
</div>
</div>
</section>
++++
<1> Introducing the `AndStep` with the `&` operator.
<2> Introducing the `OrStep` with the `|` operator.
==== Traverser Methods
It is rare that a user will ever interact with a `Traverser` directly. However, if they do, some method redirects exist
to make it easy.
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-39" type="radio" name="radio-set-1761594617-39" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-39" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-40" type="radio" name="radio-set-1761594617-39" class="tab-selector-2" />
<label for="tab-1761594617-40" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.V().map{it.get().value('name')} // conventional =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter gremlin> g.V.map{it.name} // sugar =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V().map{it.get().value('name')} // conventional g.V.map{it.name} // sugar
++++
</div>
</div>
</section>
++++
[[utilities-plugin]]
=== Utilities Plugin
The Utilities Plugin provides various functions, helper methods and imports of external classes that are useful in
the console.
NOTE: The Utilities Plugin is enabled in the Gremlin Console by default.
[[describe-graph]]
==== Describe Graph
A good implementation of the Gremlin APIs will validate their features against the
link:../dev/provider/#validating-with-gremlin-test[Gremlin test suite]. To learn more about a specific
implementation's compliance with the test suite, use the `describeGraph` function. The following shows the output
for `HadoopGraph`:
++++
<section class="tabs tabs-2">
<input id="tab-1761594617-41" type="radio" name="radio-set-1761594617-41" class="tab-selector-1" checked="checked" />
<label for="tab-1761594617-41" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594617-42" type="radio" name="radio-set-1761594617-41" class="tab-selector-2" />
<label for="tab-1761594617-42" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> describeGraph(HadoopGraph) =⇒ IMPLEMENTATION - org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph TINKERPOP TEST SUITE - Compliant with (5 of 4 suites) - Compliant with (5 of 11 suites) > org.apache.tinkerpop.gremlin.structure.StructureStandardSuite > org.apache.tinkerpop.gremlin.process.ProcessStandardSuite > org.apache.tinkerpop.gremlin.process.ProcessComputerSuite > org.apache.tinkerpop.gremlin.process.ProcessLimitedStandardSuite > org.apache.tinkerpop.gremlin.process.ProcessLimitedComputerSuite - Opts out of 22 individual tests > org.apache.tinkerpop.gremlin.process.traversal.step.map.MatchTest$Traversals#g_V_matchXa_hasXname_GarciaXa_0writtenBy_ba_0sungBy_bX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.MatchTest$Traversals#g_V_matchXa_0sungBy_ba_0sungBy_cb_writtenBy_dc_writtenBy_ed_hasXname_George_HarisonXe_hasXname_Bob_MarleyXX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.MatchTest$Traversals#g_V_matchXa_0sungBy_ba_0writtenBy_cb_writtenBy_dc_sungBy_dd_hasXname_GarciaXX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.MatchTest$Traversals#g_V_matchXa_0sungBy_ba_0writtenBy_cb_writtenBy_dX_whereXc_sungBy_dX_whereXd_hasXname_GarciaXX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.CountTest$Traversals#g_V_both_both_count "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.CountTest$Traversals#g_V_repeatXoutX_timesX3X_count "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.CountTest$Traversals#g_V_repeatXoutX_timesX8X_count "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.CountTest$Traversals#g_V_repeatXoutX_timesX5X_asXaX_outXwrittenByX_asXbX_selectXa_bX_count "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.ProfileTest$Traversals#grateful_V_out_out_profile "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.ProfileTest$Traversals#grateful_V_out_out_profileXmetricsX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.sideEffect.GroupTest#g_V_hasLabelXsongX_groupXaX_byXnameX_byXproperties_groupCount_byXlabelXX_out_capXaX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.sideEffect.GroupTest#g_V_outXfollowedByX_group_byXsongTypeX_byXbothE_group_byXlabelX_byXweight_sumXX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.sideEffect.GroupTest#g_V_repeatXbothXfollowedByXX_timesX2X_group_byXsongTypeX_byXcountX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.sideEffect.GroupTest#g_V_repeatXbothXfollowedByXX_timesX2X_groupXaX_byXsongTypeX_byXcountX_capXaX "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.computer.GraphComputerTest#shouldStartAndEndWorkersForVertexProgramAndMapReduce "Spark executes map and combine in a lazy fashion and thus, fails the blocking aspect of this test" > org.apache.tinkerpop.gremlin.process.traversal.TraversalInterruptionTest#* "The interruption model in the test can’t guarantee interruption at the right time with HadoopGraph." > org.apache.tinkerpop.gremlin.process.traversal.TraversalInterruptionComputerTest#* "This test makes use of a sideEffect to enforce when a thread interruption is triggered and thus isn’t applicable to HadoopGraph" > org.apache.tinkerpop.gremlin.process.traversal.step.map.MatchTest$CountMatchTraversals#g_V_matchXa_followedBy_count_isXgtX10XX_ba_0followedBy_count_isXgtX10XX_bX_count "Hadoop-Gremlin is OLAP-oriented and for OLTP operations, linear-scan joins are required. This particular tests takes many minutes to execute." > org.apache.tinkerpop.gremlin.process.traversal.step.map.ReadTest$Traversals#g_io_readXxmlX "Hadoop-Gremlin does not support reads/writes with GraphML." > org.apache.tinkerpop.gremlin.process.traversal.step.map.ReadTest$Traversals#g_io_read_withXreader_graphmlX "Hadoop-Gremlin does not support reads/writes with GraphML." > org.apache.tinkerpop.gremlin.process.traversal.step.map.WriteTest$Traversals#g_io_writeXxmlX "Hadoop-Gremlin does not support reads/writes with GraphML." > org.apache.tinkerpop.gremlin.process.traversal.step.map.WriteTest$Traversals#g_io_write_withXwriter_graphmlX "Hadoop-Gremlin does not support reads/writes with GraphML." - NOTE - The describeGraph() function shows information about a Graph implementation. It uses information found in Java Annotations on the implementation itself to determine this output and does not assess the actual code of the test cases of the implementation itself. Compliant implementations will faithfully and honestly supply these Annotations to provide the most accurate depiction of their support.
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
describeGraph(HadoopGraph)
++++
</div>
</div>
</section>
++++
[[gremlin-mcp]]
=== Gremlin MCP
Gremlin MCP integrates Apache TinkerPop with the Model Context Protocol (MCP) so that MCP‑capable assistants (for
example, desktop chat clients that support MCP) can discover your graph, run Gremlin traversals and exchange graph data
through a small set of well‑defined tools. It allows users to “talk to your graph” while keeping full Gremlin power
available when they or the assistant need it.
MCP is an open protocol that lets assistants call server‑hosted tools in a structured way. Each tool has a name, an
input schema, and a result schema. When connected to a Gremlin MCP server, the assistant can:
* Inspect the server’s health and connection to a Gremlin data source
* Discover the graph’s schema (labels, properties, relationships, counts)
* Execute Gremlin traversals
The Gremlin MCP server sits alongside Gremlin Server (or any TinkerPop‑compatible endpoint) and forwards tool calls to
the graph via standard Gremlin traversals.
IMPORTANT: This MCP server is designed for development and trusted environments.
WARNING: Gremlin MCP can modify the graph to which it is connected. To prevent such changes, ensure that Gremlin MCP is
configured to work against a read-only instance of the graph. Gremlin Server hosted graphs can configure their graph
using `withStrategies(ReadOnlyStrategy)` for that protection.
WARNING: Gremlin MCP executes global graph traversals to help it understand the schema and gather statistics. On a large
graph these queries will be costly. If you are trying Gremlin MCP, please try it with a smaller subset of your graph for
experimentation purposes.
MCP defines a simple request/response model for invoking named tools. A tool declares its input and output schema so an
assistant can construct valid calls and reason about results. The Gremlin MCP server implements several tools and, when
invoked by an MCP client, translates those calls to Gremlin traversals against a configured Gremlin endpoint. The
endpoint is typically Gremlin Server, but could be used with any graph system that implements its protocols.
TIP: Gremlin MCP does not replace Gremlin itself. It complements it by helping assistants discover data and propose
traversals. You can always provide an explicit traversal when you know what you want.
The Gremlin MCP server exposes these tools:
* `get_graph_status` — Returns basic health and connectivity information for the backing Gremlin data source.
* `get_graph_schema` — Discovers vertex labels, edge labels, property keys, and relationship patterns. Low‑cardinality
properties may be surfaced as enums to encourage valid values in queries.
* `run_gremlin_query` — Executes an arbitrary Gremlin traversal and returns JSON results.
* `refresh_schema_cache` — Forces schema discovery to run again when the graph has changed.
==== Schema discovery
Schema discovery is the foundation that lets humans and AI assistants reason about a graph without prior tribal
knowledge. By automatically mapping the graph’s structure and commonly observed patterns, it produces a concise,
trustworthy description that accelerates onboarding, improves the quality of suggested traversals, and reduces
trial‑and‑error against production data. For assistants, a discovered schema becomes the guidance layer for planning
valid queries, generating meaningful filters, and explaining results in natural language. For operators, it offers safer
and more efficient interactions by avoiding blind exploratory scans, enabling caching and change detection, and
providing hooks to steer what should or shouldn’t be surfaced (for example, excluding sensitive or non‑categorical
fields). In short, schema discovery turns an opaque dataset into an actionable contract between your graph and the tools
that use it.
Schema discovery uses Gremlin traversals and sampling to uncover the following information about the graph:
* Labels - Vertex and edge labels are collected and de‑duplicated.
* Properties - For each label, a sample of elements is inspected to list observed property keys.
* Counts (optional) - Approximate counts can be included per label.
* Relationship patterns - Connectivity is derived from the labels of edges and their incident vertices.
* Enums - Properties with a small set of distinct values may be surfaced as enumerations to promote precise filters.
==== Executing traversals
When the assistant needs to answer a question, a common sequence is:
. Optionally, call get_graph_status.
. Retrieve (or reuse) schema via `get_graph_schema`.
. Formulate a traversal and call `run_gremlin_query`.
. Present results and, if required, refine the traversal.
For example, the assistant may execute a traversal like the following:
[source,groovy]
g.V().hasLabel('person').has('age', gt(30)).out('knows').values('name')
==== Configuring an MCP Client The MCP client is responsible for launching the Gremlin MCP server and providing connection details for the Gremlin endpoint the server should use. Basic connection settings: * `GREMLIN_MCP_ENDPOINT` — `host:port` or `host:port/traversal_source` for the target Gremlin Server or compatible endpoint (default traversal source: `g`) * `GREMLIN_MCP_USE_SSL` — set to `true` when TLS is required by the endpoint (default: `false`) * `GREMLIN_MCP_USERNAME` / `GREMLIN_PASSWORD` — credentials when authentication is enabled (optional) * `GREMLIN_MCP_IDLE_TIMEOUT` — idle connection timeout in seconds (default: `300`) * `GREMLIN_MCP_LOG_LEVEL` — logging verbosity for troubleshooting: `error`, `warn`, `info`, or `debug` (default: `info`) Advanced schema discovery and performance tuning: * `GREMLIN_MCP_ENUM_DISCOVERY_ENABLED` — enable enum property discovery (default: `true`) * `GREMLIN_MCP_ENUM_CARDINALITY_THRESHOLD` — max distinct values for a property to be considered an enum (default: `10`) * `GREMLIN_MCP_ENUM_PROPERTY_DENYLIST` — comma-separated property names to exclude from enum detection (default: `id,pk,name,description,startDate,endDate,timestamp,createdAt,updatedAt`) * `GREMLIN_MCP_SCHEMA_MAX_ENUM_VALUES` — limit the number of enum values returned per property in the schema (default: `10`) * `GREMLIN_MCP_SCHEMA_INCLUDE_SAMPLE_VALUES` — include small example values for properties in the schema (default: `false`) * `GREMLIN_MCP_SCHEMA_INCLUDE_COUNTS` — include approximate vertex/edge label counts in the schema (default: `false`) The configurations related to enums begs additional explanation as to their importance. Treating only truly categorical properties as enums prevents misleading suggestions and sensitive data exposure in assistant‑facing schemas. Without a denylist and related controls, low‑sample snapshots can make non‑categorical fields like IDs, timestamps, or free text appear “enum‑like,” degrading query guidance and result explanations. By explicitly excluding such keys, the schema remains focused on meaningful categories (e.g., status or type), which improves AI query formulation, reduces noise, and avoids surfacing unstable or private values. It also streamlines schema discovery by skipping properties that would create large or frequently changing value sets, improving performance and stability. Consult the MCP client documentation for how environment variables are supplied and how tool calls are approved and presented to the user. // LAST LINE //// //// anchor:gremlin-variants[] [[gremlin-drivers-variants]] = Gremlin Drivers and Variants image::gremlin-house-of-mirrors.png[width=1024] At this point, readers should be well familiar with the <<intro,Introduction>> to this Reference Documentation and will likely be thinking about implementation details specific to the graph provider they have selected as well as the programming language they intend to use. The choice of programming language could have implications to the architecture and design of the application and the choice itself may have limits imposed upon it by the chosen graph provider. For example, a <<connecting-rgp,Remote Gremlin Provider>> will require the selection of a driver to interact with it. On the other hand, a graph system that is designed for embedded use, like TinkerGraph, needs the Java Virtual Machine (JVM) environment which is easily accessed with a JVM programming language. If however the programming language is not built for the JVM then it will require <<connecting-gremlin-server,Gremlin Server>> in the architecture as well. TinkerPop provides an array of drivers in different programming languages as a way to connect to a remote Gremlin Server or Remote Gremlin Provider. Drivers allow the developer to make requests to that remote system and get back results from the TinkerPop-enabled graphs hosted within. A driver can submit Gremlin strings and Gremlin bytecode over this sub-protocol. Gremlin strings are written in the scripting language made available by the remote system that the driver is connecting to (typically, Groovy-based). This connection approach is quite similar to what developers are likely familiar with when using JDBC and SQL. The preferred approach is to use bytecode-based requests, which essentially allows the ability to craft Gremlin directly in the programming language of choice. As Gremlin makes use of two fundamental programming constructs: link:https://en.wikipedia.org/wiki/Function_composition[function composition] and link:https://en.wikipedia.org/wiki/Nested_function[function nesting], it is possible to embed the Gremlin language in any modern programming language. It is a far more natural way to program, because it enables IDE interaction, compile time checks, and language level checks that can help prevent errors prior to execution. The differences between these two approaches were outlined in the <<connecting-via-drivers,Connecting Via Drivers>> Section, which applies to Gremlin Server, but also to Remote Gremlin Providers. In addition to the languages and drivers that TinkerPop supports, there are also third-party implementations, as well as extensions to the Gremlin language that might be specific to a particular graph provider. That listing can be found on the TinkerPop link:https://tinkerpop.apache.org/#graph-systems[home page]. Their description is beyond the scope of this documentation. TIP: When possible, it is typically best to align the version of TinkerPop used on the client with the version supported on the server. While it is not impossible to have a different version between client and server, it may require additional configuration and/or a deeper knowledge of that changes introduced between versions. It's simply safer to avoid the conflict, when allowed to do so. IMPORTANT: Gremlin-Java is the canonical representation of Gremlin and any (proper) Gremlin language variant will emulate its structure as best as possible given the constructs of the host language. A strong correspondence between variants ensures that the general Gremlin reference documentation is applicable to all variants and that users moving between development languages can easily adopt the Gremlin variant for that language. image::gremlin-variant-architecture.png[width=650] The following sections describe each language variant and driver that is officially TinkerPop a part of the project, providing more detailed information about usage, configuration and known limitations. [[gremlin-go]] == Gremlin-Go image:gremlin-go.png[width=130,float=right] Apache TinkerPop's Gremlin-Go implements Gremlin within the link:https://go.dev/[Go] language and can therefore be used on different operating systems. Go's syntax has the similar constructs as Java including "dot notation" for function chaining (`a.b.c`) and round bracket function arguments (`a(b,c)`). Something unlike Java is that Gremlin-Go requires a `gremlingo` prefix when using the namespace (`a(b())` vs `gremlingo.a(gremlingo.T__.b())`). Anyone familiar with Gremlin-Java will be able to work with Gremlin-Go with relative ease. Moreover, there are a few added constructs to Gremlin-Go that make traversals a bit more succinct. To install the Gremlin-Go as a dependency for your project, run the following in the root directory of your project that contains your `go.mod` file: [source,bash]
go get github.com/apache/tinkerpop/gremlin-go/v3[optionally append @<version>, such as @v3.5.3]
[[gremlin-go-connecting]] === Connecting The pattern for connecting is described in <<connecting-gremlin,Connecting Gremlin>> and it basically distills down to creating a `GraphTraversalSource`. A `GraphTraversalSource` is created from the anonymous `Traversal_()`. [source,go]
remote, err := gremlingo.NewDriverRemoteConnection("ws://localhost:8182/gremlin") g := gremlingo.Traversal_().With(remote)
If you need to additional parameters to connection setup, you can pass in a configuration function. [source,go]
remote, err := gremlingo.NewDriverRemoteConnection("ws://localhost:8182/gremlin", func(settings *DriverRemoteConnectionSettings) { settings.TraversalSource = "gmodern" })
Gremlin-go supports plain text authentication. It can be set in the connection function. [source,go]
remote, err := gremlingo.NewDriverRemoteConnection("ws://localhost:8182/gremlin", func(settings *DriverRemoteConnectionSettings) { settings.TlsConfig = &tls.Config{InsecureSkipVerify: true} settings.AuthInfo = gremlingo.BasicAuthInfo("login", "password") })
If you authenticate to a remote <<connecting-gremlin-server,Gremlin Server>> or <<connecting-rgp,Remote Gremlin Provider>>, this server normally has SSL activated and the websockets url will start with 'wss://'. Some connection options can also be set on individual requests made through the using `With()` step on the `TraversalSource`. For instance to set request timeout to 500 milliseconds: [source,go]
results, err := g.With("evaluationTimeout", 500).V().Out("knows").ToList()
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent` and `evaluationTimeout`. anchor:go-imports[] [[gremlin-go-imports]] === Common Imports There are a number of classes, functions and tokens that are typically used with Gremlin. The following import provide most of the typical functionality required to use Gremlin: [source,go]
import ( "github.com/apache/tinkerpop/gremlin-go/driver" )
These can be used analogously to how they are used in Gremlin-Java. [source,go]
results, err := g.V().HasLabel("person").Has("age", gremlingo.T__.Is(gremlingo.P.Gt(30))).Order().By("age", gremlingo.Desc).ToList()
anchor:go-configuration[] [[gremlin-go-configuration]] === Configuration The following table describes the various configuration options for the Gremlin-go Driver. They can be passed to the `NewClient` or `NewDriverRemoteConnection` functions as configuration function arguments: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |TraversalSource |Traversal source. |"g" |TransporterType |Transporter type. |Gorilla |LogVerbosity |Log verbosity.|gremlingo.INFO |Logger |Instance of logger. |log |Language |Language used for logging messages. |language.English |AuthInfo |Authentification info, can be build with BasicAuthInfo() or HeaderAuthInfo(). |empty |TlsConfig |TLS configuration. |empty |KeepAliveInterval |Keep connection alive interval. |5 seconds |WriteDeadline |Write deadline. |3 seconds |ConnectionTimeout | Timeout for establishing connection. |45 seconds |NewConnectionThreshold | Minimum amount of concurrent active traversals on a connection to trigger creation of a new connection. |4 |MaximumConcurrentConnections | Maximum number of concurrent connections. |number of runtime processors |EnableCompression |Flag to enable compression. |false |ReadBufferSize |Specify I/O buffer sizes in bytes. If a buffer size is zero, then a useful default size is used |0 |WriteBufferSize |Specify I/O buffer sizes in bytes. If a buffer size is zero, then a useful default size is used |0 |Session |Session ID. |"" |EnableUserAgentOnConnect |Enables sending a user agent to the server during connection requests. More details can be found in provider docs link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#_graph_driver_provider_requirements[here].|true |========================================================= [[gremlin-go-strategies]] === Traversal Strategies In order to add and remove <<traversalstrategy,traversal strategies>> from a traversal source, Gremlin-Go has a `TraversalStrategy` interface along with a collection of functions that mirror the standard Gremlin-Java strategies. [source,go]
promise := g.WithStrategies(gremlingo.ReadOnlyStrategy()).AddV("person").Property("name", "foo").Iterate()
NOTE: Many of the `TraversalStrategy` classes in Gremlin-Go are proxies to the respective strategy on Apache TinkerPop's JVM-based Gremlin traversal machine. As such, their `apply(Traversal)` method does nothing. However, the strategy is encoded in the Gremlin-Go bytecode and transmitted to the Gremlin traversal machine for re-construction machine-side. [[gremlin-go-transactions]] === Transactions To get a full understanding of this section, it would be good to start by reading the <<transactions,Transactions>> section of this documentation, which discusses transactions in the general context of TinkerPop itself. This section builds on that content by demonstrating the transactional syntax for Go. [source,go]
remote, err := NewDriverRemoteConnection("ws://localhost:8182/gremlin") g := gremlingo.Traversal_().With(remote)
tx := g.Tx()
gtx, _ := tx.Begin()
promise := g.AddV("person").Property("name", "Lyndon").Iterate() err := ←promise
if err != nil { // Rollback the transaction if an error occurs. tx.rollback() } else { // Commit the transaction. The transaction can no longer be used and cannot be re-used. // A new transaction can be spawned through g.Tx(). tx.Commit() }
[[gremlin-go-lambda]] === The Lambda Solution Supporting link:https://en.wikipedia.org/wiki/Anonymous_function[anonymous functions] across languages is difficult as most languages do not support lambda introspection and thus, code analysis. In Gremlin-Go, a Gremlin lambda should be represented as a zero-arg callable that returns a string representation of the lambda expected for use in the traversal. The lambda should be written as a `Gremlin-Groovy` string. When the lambda is represented in `Bytecode` its language is encoded such that the remote connection host can infer which translator and ultimate execution engine to use. [source,go]
r, err := g.V().Out().Map(&gremlingo.Lambda{Script: "it.get().value('name').length()", Language: ""}).Sum().ToList()
TIP: When running into situations where Groovy cannot properly discern a method signature based on the `Lambda`
instance created, it will help to fully define the closure in the lambda expression - so rather than
`Script: "it.get().value('name')", Language: "gremlin-groovy"`, prefer `Script: "x -> x.get().value('name')", Language: "gremlin-groovy"`.
Finally, Gremlin `Bytecode` that includes lambdas requires that the traversal be processed by the
`ScriptEngine`. To avoid continued recompilation costs, it supports the encoding of bindings, which allow a remote
engine to to cache traversals that will be reused over and over again save that some parameterization may change. Thus,
instead of translating, compiling, and then executing each submitted bytecode, it is possible to simply execute.
[source,go]
r, err := g.V&gremlingo.Bindings{}).Of("x", 1.Out("created").Map(&gremlingo.Lambda{Script: "it.get().value('name').length()", Language: ""}).Sum().ToList() r, err := g.V&gremlingo.Bindings{}).Of("x", 4.Out("created").Map(&gremlingo.Lambda{Script: "it.get().value('name').length()", Language: ""}).Sum().ToList()
WARNING: As explained throughout the documentation, when possible <<a-note-on-lambdas,avoid>> lambdas. [[gremlin-go-scripts]] === Submitting Scripts The `Client` class implementation/interface is based on the Java Driver, with some restrictions. Most notably, Gremlin-go does not yet implement the `Cluster` class. Instead, `Client` is instantiated directly. Usage is as follows: [source,go]
import "github.com/apache/tinkerpop/gremlin-go/v3/driver" <1> client, err := gremlingo.NewClient("ws://localhost:8182/gremlin") <2>
<1> Import the Gremlin-Go module. <2> Opens a reference to `localhost` - note that there are various configuration options that can be passed to the `Client` object upon instantiation as keyword arguments. Once a `Client` instance is ready, it is possible to issue some Gremlin: [source,go]
resultSet, err := client.Submit("g.V().count()") <1> result, err := resultSet.All() <2> fmt.Println(result[0].GetString()) <3>
<1> Submit a script that simply returns a Count of vertexes. <2> Get results from resultSet. Block until the script is evaluated and results are sent back by the server. <3> Use the result. ==== Per Request Settings Both the `Client` and `DriverRemoteConnection` types have a `SubmitWithOptions(traversalString, requestOptions)` variant of the standard `Submit()` method. These methods allow a `RequestOptions` struct to be passed in which will augment the execution on the server. `RequestOptions` can be constructed using `RequestOptionsBuilder`. A good use-case for this feature is to set a per-request override to the `evaluationTimeout` so that it only applies to the current request. [source,go]
options := new(RequestOptionsBuilder). SetEvaluationTimeout(5000). SetBatchSize(32). SetMaterializeProperties("tokens"). AddBinding("x", 100). Create() resultSet, err := client.SubmitWithOptions("g.V(x).count()", options)
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent`, `evaluationTimeout` and `materializeProperties`.
`RequestOptions` may also contain a map of variable `bindings` to be applied to the supplied
traversal string.
IMPORTANT: The preferred method for setting a per-request timeout for scripts is demonstrated above, but those familiar
with bytecode may try `g.with("evaluationTimeout", 500)` within a script. Scripts with multiple traversals and multiple
timeouts will be interpreted as a sum of all timeouts identified in the script for that request.
[source,go]
resultSet, err := client.SubmitWithOptions("g.with('evaluationTimeout', 500).addV().iterate();"+ "g.addV().iterate();"+ "g.with('evaluationTimeout', 500).addV();", new(RequestOptionsBuilder).SetEvaluationTimeout(500).Create()) results, err := resultSet.All()
In the above example, defines a timeout of 500 milliseconds, but the script has three traversals with two internal settings for the timeout using `with()`. The request timeout used by the server will therefore be 1000 milliseconds (overriding the 500 which itself was an override for whatever configuration was on the server). [[gremlin-go-dsl]] === Domain Specific Languages Writing a Gremlin <<dsl,Domain Specific Language>> (DSL) in Go requires embedding of several structs and interfaces: * `GraphTraversal` - which exposes the various steps used in traversal writing * `GraphTraversalSource` - which spawns `GraphTraversal` instances * `AnonymousTraversal` - which spawns anonymous traversals from steps The Social DSL based on the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/images/tinkerpop-modern.png["modern" toy graph] might look like this: [source,go]
var = gremlingo.T var P = gremlingo.P var gt = gremlingo.P.Gt type GraphTraversal = gremlingo.GraphTraversal type GraphTraversalSource = gremlingo.GraphTraversalSource type AnonymousTraversal = gremlingo.AnonymousTraversal
type socialTraversal struct { *GraphTraversal }
func (s *socialTraversal) knows(personName string) *socialTraversal { return &socialTraversal{s.Out("knows").HasLabel("person").Has("name", personName)} }
func (s *socialTraversal) youngestFriendsAge() *socialTraversal { return &socialTraversal{s.Out("knows").HasLabel("person").Values("age").Min()} }
func (s *socialTraversal) createdAtLeast(number int) *socialTraversal { return &socialTraversal{s.OutE("created").Count().Is(gt(number))} }
type socialTraversalSource struct { *GraphTraversalSource }
func (sts *socialTraversalSource) persons(personNames …interface{}) *socialTraversal { t := sts.GetGraphTraversal() t.Bytecode.AddStep("V") t.Bytecode.AddStep("hasLabel", "person") if personNames != nil { t.Bytecode.AddStep("has", "name", P.Within(personNames…)) } return &socialTraversal{t} }
type iSocialAnonymousTraversal interface { AnonymousTraversal knows(personName string) *GraphTraversal youngestFriendsAge() *GraphTraversal createdAtLeast(number int) *GraphTraversal }
type socialAnonymousTraversal struct { AnonymousTraversal socialTraversal func() *socialTraversal }
var s iSocialAnonymousTraversal = &socialAnonymousTraversal{ , func() *socialTraversal { return &socialTraversal{gremlingo.NewGraphTraversal(nil, gremlingo.NewBytecode(nil), nil)} }, }
func (sat *socialAnonymousTraversal) knows(personName string) *GraphTraversal { return sat.socialTraversal().knows(personName).GraphTraversal }
func (sat *socialAnonymousTraversal) youngestFriendsAge() *GraphTraversal { return sat.socialTraversal().youngestFriendsAge().GraphTraversal }
func (sat *socialAnonymousTraversal) createdAtLeast(number int) *GraphTraversal { return sat.socialTraversal().createdAtLeast(number).GraphTraversal }
Using the DSL requires a social traversal source to be created from the default traversal source: [source,go]
driverRemoteConnection, _ := gremlingo.NewDriverRemoteConnection("ws://localhost:8182/gremlin", func(settings *gremlingo.DriverRemoteConnectionSettings) { settings.TraversalSource = "gmodern" }) defer driverRemoteConnection.Close()
social := &socialTraversalSource{gremlingo.Traversal_().With(driverRemoteConnection)}
resBool, _ := social.persons("marko", "stephen").knows("josh").HasNext() fmt.Println(resBool)
resCreated, _ := social.persons().createdAtLeast(1).Next() fmt.Println(resCreated.GetString())
resAnon, _ := social.persons().Filter(s__.createdAtLeast(1)).Count().Next() fmt.Println(resAnon.GetString())
[[gremlin-go-differences]] === Differences All step names start with a capital letter which is consistent with the idiomatic style for Go. This use of Pascal-case extends to enums like `Direction`, e.g. `Direction.OUT` is `Direction.Out` in Go. [[gremlin-go-aliases]] === Aliases To make the code more readable and close to the Gremlin query language), you can use aliases. These aliases can be named with capital letters to be consistent with non-aliased steps but will result in exported variables which could be problematic if not being used in a top-level program (i.e. not a redistributable package). [source,go]
var __ = gremlingo.T__ var gt = gremlingo.P.Gt var order = gremlingo.Order
results, err := g.V().HasLabel("person").Has("age", __.Is(gt(30))).Order().By("age", order.Desc).ToList()
==== List of useful aliases [source,go]
// common var __ = gremlingo.T__ var TextP = gremlingo.TextP
// predicates var between = gremlingo.P.Between var eq = gremlingo.P.Eq var gt = gremlingo.P.Gt var gte = gremlingo.P.Gte var inside = gremlingo.P.Inside var lt = gremlingo.P.Lt var lte = gremlingo.P.Lte var neq = gremlingo.P.Neq var not = gremlingo.P.Not var outside = gremlingo.P.Outside var test = gremlingo.P.Test var within = gremlingo.P.Within var without = gremlingo.P.Without var and = gremlingo.P.And var or = gremlingo.P.Or
// sorting var order = gremlingo.Order
Finally, the enum construct for `Cardinality` cannot have functions attached to it the way it can be done in Java, therefore cardinality functions that take a value like `list()`, `set()`, and `single()` are referenced from a `CardinalityValue` class rather than `Cardinality` itself. [[gremlin-go-limitations]] === Limitations * There is no default `set` type in Go. Any set type code from server will be deserialized into slices with the list type implementation. To input a set into Gremlin-Go, a custom struct which implements the `gremlingo.Set` interface will be serialized as a set. `gremlingo.NewSimpleSet` is a basic implementation of a set that is provided by Gremlin-Go that can be used to fulfill the `gremlingo.Set` interface if desired. * Go does not support ordered maps natively as the built-in `map` type does not guarantee iteration order. Traversal results which contain maps may not preserve original ordering when deserialized into Go's native map types. [[gremlin-go-examples]] === Application Examples The TinkerPop source code contains some sample applications that demonstrate the basics of Gremlin-Go. They can be found in GitHub link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/glv-examples/gremlin-go/[here] and are designed to connect to a running <<gremlin-server,Gremlin Server>> configured with the `conf/gremlin-server.yaml` and `conf/gremlin-server-modern.yaml` files as included with the standard release packaging. This guide assumes Gremlin Server will be executed using Docker. Alternatively, Gremlin Server can run locally (see the <<gremlin-server,Gremlin Server>> documentation for this option). To start Gremlin Server using Docker, first download an image of Gremlin Server from Docker Hub: [source,shell]
docker pull tinkerpop/gremlin-server
Clean server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server
Modern toy graph server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server conf/gremlin-server-modern.yaml
The remote connection and basic Gremlin examples can be run on a clean server, while traversal examples should be run on a server with the Modern graph preloaded. ==== Prerequisites - Compatible Go installed (see <<development-environment,Development Environment>> for supported versions) Navigate to the examples directory: [source,shell]
cd glv-examples/gremlin-go
Run the examples: [source,shell]
go run connections.go go run basic_gremlin.go go run modern_traversals.go
[[gremlin-groovy]] == Gremlin-Groovy image:gremlin-groovy-drawing.png[width=130,float=right] Apache TinkerPop's Gremlin-Groovy implements Gremlin within the link:http://groovy.apache.org[Apache Groovy] language. As a JVM-based language variant, Gremlin-Groovy is backed by <<gremlin-java,Gremlin-Java>> constructs. Moreover, given its scripting nature, Gremlin-Groovy serves as the language of <<gremlin-console,Gremlin Console>> and <<gremlin-server,Gremlin Server>>. [source,groovy]
compile group: 'org.apache.tinkerpop', name: 'gremlin-core', version: '3.8.0-SNAPSHOT' compile group: 'org.apache.tinkerpop', name: 'gremlin-driver', version: '3.8.0-SNAPSHOT'
[[gremlin-groovy-differences]]
=== Differences
In Groovy, `as`, `in`, and `not` are reserved words. Gremlin-Groovy does not allow these steps to be called
statically from the anonymous traversal `+__+` and therefore, must always be prefixed with `+__.+` For instance:
`+g.V().as('a').in().as('b').where(__.not(__.as('a').out().as('b')))+`
Care needs to be taken when using the `any(P)` step as you may accidentally invoke Groovy's `any(Closure)` method. This
typically happens when calling `any()` without arguments. You can tell if Groovy's `any` has been called if the return
value is a boolean.
Since Groovy has access to the full JVM as Java does, it is possible to construct `Date`-like objects directly, but
the Gremlin language does offer a `datetime()` function that is exposed in the Gremlin Console and as a function for
Gremlin scripts sent to Gremlin Server. The function accepts the following forms of dates and times using a default
time zone offset of UTC(+00:00):
* `2018-03-22`
* `2018-03-22T00:35:44`
* `2018-03-22T00:35:44Z`
* `2018-03-22T00:35:44.741`
* `2018-03-22T00:35:44.741Z`
* `2018-03-22T00:35:44.741+1600`
anchor:connecting-via-remotegraph[]
anchor:connecting-via-java[]
[[gremlin-java]]
== Gremlin-Java
image:gremlin-java-drawing.png[width=130,float=right] Apache TinkerPop's Gremlin-Java implements Gremlin within the
Java language and can be used by any Java Virtual Machine. Gremlin-Java is considered the canonical, reference
implementation of Gremlin and serves as the foundation by which all other Gremlin language variants should emulate.
As the Gremlin Traversal Machine that processes Gremlin queries is also written in Java, it can be used in all three
connection methods described in the <<connecting-gremlin,Connecting Gremlin>> Section.
[source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>gremlin-core</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
<!-- when using Gremlin Server or Remote Gremlin Provider a driver is required -→ <dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>gremlin-driver</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
<!-- alternatively the driver is packaged as an uberjar with shaded non-optional dependencies including gremlin-core and tinkergraph-gremlin which are not shaded. -→ <dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>gremlin-driver</artifactId> <version>3.8.0-SNAPSHOT</version> <classifier>shaded</classifier> <!-- The shaded JAR uses the original POM, therefore conflicts may still need resolution -→ <exclusions> <exclusion> <groupId>io.netty</groupId> <artifactId>*</artifactId> </exclusion> </exclusions> </dependency>
[[gremlin-java-connecting]] === Connecting The pattern for connecting is described in <<connecting-gremlin,Connecting Gremlin>> and it basically distills down to creating a `GraphTraversalSource`. For <<connecting-embedded,embedded>> mode, this involves first creating a `Graph` and then spawning the `GraphTraversalSource`: [source,java]
Graph graph = …; GraphTraversalSource g = traversal().with(graph);
Using "g" it is then possible to start writing Gremlin. The "g" allows for the setting of many configuration options which affect traversal execution. The <<traversal, Traversal>> Section describes some of these options and some are only suitable with <<connecting-embedded,embedded>> style usage. For remote options however there are some added configurations to consider and this section looks to address those. When connecting to <<connecting-gremlin-server,Gremlin Server>> or <<connecting-rgp,Remote Gremlin Providers>> it is possible to configure the `DriverRemoteConnection` manually as shown in earlier examples where the host and port are provided as follows: [source,java]
GraphTraversalSource g = traversal().with(DriverRemoteConnection.using("localhost",8182,"g"));
It is also possible to create it from a configuration. The most basic way to do so involves the following line of code: [source,java]
GraphTraversalSource g = traversal().with('conf/remote-graph.properties');
The `remote-graph.properties` file simply provides connection information to the `GraphTraversalSource` which is used to configure a `RemoteConnection`. That file looks like this: [source,text]
gremlin.remote.remoteConnectionClass=org.apache.tinkerpop.gremlin.driver.remote.DriverRemoteConnection gremlin.remote.driver.clusterFile=conf/remote-objects.yaml gremlin.remote.driver.sourceName=g
The `RemoteConnection` is an interface that provides the transport mechanism for "g" and makes it possible to for that mechanism to be altered (typically by graph providers who have their own protocols). TinkerPop provides one such implementation called the `DriverRemoteConnection` which enables transport over Gremlin Server protocols using the TinkerPop driver. The driver is configured by the specified `gremlin.remote.driver.clusterFile` and the local "g" is bound to the `GraphTraversalSource` on the remote end with `gremlin.remote.driver.sourceName` which in this case is also "g". There are other ways to configure the traversal using `with()` as it has other overloads. It can take an Apache Commons `Configuration` object which would have keys similar to those shown in the properties file and it can also take a `RemoteConnection` instance directly. The latter is interesting in that it means it is possible to programmatically construct all aspects of the `RemoteConnection`. For TinkerPop usage, that might mean directly constructing the `DriverRemoteConnection` and the driver instance that supplies the transport mechanism. For example, the command shown above could be re-written using programmatic construction as follows: [source,java]
Cluster cluster = Cluster.open(); GraphTraversalSource g = traversal().with(DriverRemoteConnection.using(cluster, "g"));
Please consider the following example:
++++
<section class="tabs tabs-3">
<input id="tab-1761594964-1" type="radio" name="radio-set-1761594964-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761594964-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594964-2" type="radio" name="radio-set-1761594964-1" class="tab-selector-2" />
<label for="tab-1761594964-2" class="tab-label-2">groovy</label>
<input id="tab-1761594964-3" type="radio" name="radio-set-1761594964-1" class="tab-selector-3" />
<label for="tab-1761594964-3" class="tab-label-3">java</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal().with('conf/remote-graph.properties') =⇒graphtraversalsource[emptygraph[empty], standard] gremlin> g.V().elementMap() =⇒[id:1,label:person,name:marko,age:29] =⇒[id:2,label:person,name:vadas,age:27] =⇒[id:3,label:software,name:lop,lang:java] =⇒[id:4,label:person,name:josh,age:32] =⇒[id:5,label:software,name:ripple,lang:java] =⇒[id:6,label:person,name:peter,age:35] gremlin> g.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal().with('conf/remote-graph.properties') g.V().elementMap() g.close()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-3">
++++
[source,java]
GraphTraversalSource g = traversal().with("conf/remote-graph.properties"); List<Map> list = g.V().elementMap(); g.close();
++++
</div>
</div>
</section>
++++
Note the call to `close()` above. The call to `with()` internally instantiates a connection via the driver that
can only be released by "closing" the `GraphTraversalSource`. It is important to take that step to release network
resources associated with `g`.
If working with multiple remote `TraversalSource` instances it is more efficient to construct `Cluster` and `Client`
objects and then re-use them.
++++
<section class="tabs tabs-2">
<input id="tab-1761594964-4" type="radio" name="radio-set-1761594964-4" class="tab-selector-1" checked="checked" />
<label for="tab-1761594964-4" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594964-5" type="radio" name="radio-set-1761594964-4" class="tab-selector-2" />
<label for="tab-1761594964-5" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> cluster = Cluster.open('conf/remote-objects.yaml') =⇒localhost/127.0.0.1:8182 gremlin> client = cluster.connect() =⇒org.apache.tinkerpop.gremlin.driver.Client$ClusteredClient@35825d43 gremlin> g = traversal().with(DriverRemoteConnection.using(client, "g")) =⇒graphtraversalsource[emptygraph[empty], standard] gremlin> g.V().elementMap() =⇒[id:1,label:person,name:marko,age:29] =⇒[id:2,label:person,name:vadas,age:27] =⇒[id:3,label:software,name:lop,lang:java] =⇒[id:4,label:person,name:josh,age:32] =⇒[id:5,label:software,name:ripple,lang:java] =⇒[id:6,label:person,name:peter,age:35] gremlin> g.close() =⇒null gremlin> client.close() =⇒null gremlin> cluster.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
cluster = Cluster.open('conf/remote-objects.yaml') client = cluster.connect() g = traversal().with(DriverRemoteConnection.using(client, "g")) g.V().elementMap() g.close() client.close() cluster.close()
++++
</div>
</div>
</section>
++++
If the `Client` instance is supplied externally, as is shown above, then it is not closed implicitly by the close of
"g". Closing "g" will have no effect on "client" or "cluster". When supplying them externally, the `Client` and
`Cluster` objects must also be closed explicitly. It's worth noting that the close of a `Cluster` will close all
`Client` instances spawned by the `Cluster`.
Some connection options can also be set on individual requests made through the Java driver using `with()` step
on the `TraversalSource`. For instance to set request timeout to 500 milliseconds:
[source,java]
GraphTraversalSource g = traversal().with(conf); List<Vertex> vertices = g.with(Tokens.ARGS_EVAL_TIMEOUT, 500L).V().out("knows").toList()
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). Use of `Tokens` to reference these options is preferred. anchor:java-imports[] [[gremlin-java-imports]] === Common Imports There are a number of classes, functions and tokens that are typically used with Gremlin. The following imports provide most of the common functionality required to use Gremlin: [source,java]
import org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.GraphTraversalSource; import org.apache.tinkerpop.gremlin.process.traversal.IO; import static org.apache.tinkerpop.gremlin.process.traversal.AnonymousTraversalSource.traversal; import static org.apache.tinkerpop.gremlin.process.traversal.Operator.; import static org.apache.tinkerpop.gremlin.process.traversal.Order.; import static org.apache.tinkerpop.gremlin.process.traversal.P.; import static org.apache.tinkerpop.gremlin.process.traversal.Pop.; import static org.apache.tinkerpop.gremlin.process.traversal.SackFunctions.; import static org.apache.tinkerpop.gremlin.process.traversal.Scope.; import static org.apache.tinkerpop.gremlin.process.traversal.TextP.; import static org.apache.tinkerpop.gremlin.structure.Column.; import static org.apache.tinkerpop.gremlin.structure.Direction.; import static org.apache.tinkerpop.gremlin.structure.T.; import static org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__.*;
[[gremlin-java-configuration]] === Configuration The following table describes the various configuration options for the Gremlin Driver: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |connectionPool.channelizer |The fully qualified classname of the client `Channelizer` that defines how to connect to the server. |`Channelizer.WebSocketChannelizer` |connectionPool.enableSsl |Determines if SSL should be enabled or not. If enabled on the server then it must be enabled on the client. |false |connectionPool.keepAliveInterval |Length of time in milliseconds to wait on an idle connection before sending a keep-alive request. Set to zero to disable this feature. |180000 |connectionPool.keyStore |The private key in JKS or PKCS#12 format. |_none_ |connectionPool.keyStorePassword |The password of the `keyStore` if it is password-protected. |_none_ |connectionPool.keyStoreType |`PKCS12` |_none_ |connectionPool.maxContentLength |The maximum length in bytes that a message can be sent to the server. This number can be no greater than the setting of the same name in the server configuration. |65536 |connectionPool.maxInProcessPerConnection |The maximum number of in-flight requests that can occur on a connection. |4 |connectionPool.maxSimultaneousUsagePerConnection |The maximum number of times that a connection can be borrowed from the pool simultaneously. |16 |connectionPool.maxSize |The maximum size of a connection pool for a host. |8 |connectionPool.maxWaitForConnection |The amount of time in milliseconds to wait for a new connection before timing out. |3000 |connectionPool.maxWaitForClose |The amount of time in milliseconds to wait for pending messages to be returned from the server before closing the connection. |3000 |connectionPool.minInProcessPerConnection |The minimum number of in-flight requests that can occur on a connection. |1 |connectionPool.minSimultaneousUsagePerConnection |The maximum number of times that a connection can be borrowed from the pool simultaneously. |8 |connectionPool.minSize |The minimum size of a connection pool for a host. |2 |connectionPool.reconnectInterval |The amount of time in milliseconds to wait before trying to reconnect to a dead host. |1000 |connectionPool.resultIterationBatchSize |The override value for the size of the result batches to be returned from the server. |64 |connectionPool.sslCipherSuites |The list of JSSE ciphers to support for SSL connections. If specified, only the ciphers that are listed and supported will be enabled. If not specified, the JVM default is used. |_none_ |connectionPool.sslEnabledProtocols |The list of SSL protocols to support for SSL connections. If specified, only the protocols that are listed and supported will be enabled. If not specified, the JVM default is used. |_none_ |connectionPool.sslSkipCertValidation |Configures the `TrustManager` to trust all certs without any validation. Should not be used in production.|false |connectionPool.trustStore |File location for a SSL Certificate Chain to use when SSL is enabled. If this value is not provided and SSL is enabled, the default `TrustManager` will be used. |_none_ |connectionPool.trustStorePassword |The password of the `trustStore` if it is password-protected |_none_ |connectionPool.validationRequest |A script that is used to test server connectivity. A good script to use is one that evaluates quickly and returns no data. The default simply returns an empty string, but if a graph is required by a particular provider, a good traversal might be `g.inject()`. |_''_ |connectionPool.connectionSetupTimeoutMillis | Duration of time in milliseconds provided for connection setup to complete which includes WebSocket protocol handshake and SSL handshake. |15000 |enableCompression |Enables permessage-deflate compression. Note that use of compression may increase vulnerability to attacks such as CRIME/BREACH.|true |enableUserAgentOnConnect |Enables sending a user agent to the server during connection requests. More details can be found in provider docs link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#_graph_driver_provider_requirements[here].|true |hosts |The list of hosts that the driver will connect to. |localhost |jaasEntry |Sets the `AuthProperties.Property.JAAS_ENTRY` properties for authentication to Gremlin Server. |_none_ |nioPoolSize |Size of the pool for handling request/response operations. |available processors |password |The password to submit on requests that require authentication. |_none_ |path |The URL path to the Gremlin Server. |_/gremlin_ |port |The port of the Gremlin Server to connect to. The same port will be applied for all hosts. |8192 |protocol |Sets the `AuthProperties.Property.PROTOCOL` properties for authentication to Gremlin Server. |_none_ |serializer.className |The fully qualified class name of the `MessageSerializer` that will be used to communicate with the server. Note that the serializer configured on the client should be supported by the server configuration. |_none_ |serializer.config |A `Map` of configuration settings for the serializer. |_none_ |username |The username to submit on requests that require authentication. |_none_ |workerPoolSize |Size of the pool for handling background work. |available processors * 2 |========================================================= Please see the link:https://tinkerpop.apache.org/javadocs/3.8.0-SNAPSHOT/core/org/apache/tinkerpop/gremlin/driver/Cluster.Builder.html[Cluster.Builder javadoc] to get more information on these settings. [[gremlin-java-transactions]] === Transactions Transactions with Java are best described in <<transactions,The Traversal - Transactions>> section of this documentation as Java covers both embedded and remote use cases. [[gremlin-java-serialization]] === Serialization Remote systems like Gremlin Server and Remote Gremlin Providers respond to requests made in a particular serialization format and respond by serializing results to some format to be interpreted by the client. For JVM-based languages, there are two options for serialization: GraphSON and GraphBinary. It is important that the client and server have the same serializers configured in the same way or else one or the other will experience serialization exceptions and fail to always communicate. Discrepancy in serializer registration between client and server can happen fairly easily as different graph systems may automatically include serializers on the server-side, thus leaving the client to be configured manually. As an example: [source,java]
IoRegistry registry = …; // an IoRegistry instance exposed by a specific graph provider TypeSerializerRegistry typeSerializerRegistry = TypeSerializerRegistry.build().addRegistry(registry).create(); MessageSerializer serializer = new GraphBinaryMessageSerializerV1(typeSerializerRegistry); Cluster cluster = Cluster.build(). serializer(serializer). create(); Client client = cluster.connect(); GraphTraversalSource g = traversal().with(DriverRemoteConnection.using(client, "g"));
The `IoRegistry` tells the serializer what classes from the graph provider to auto-register during serialization. Gremlin Server roughly uses this same approach when it configures its serializers, so using this same model will ensure compatibility when making requests. Obviously, it is possible to switch to GraphSON or GraphBinary by using the appropriate `MessageSerializer` (e.g. `GraphSONMessageSerializerV3` or `GraphBinaryMessageSerializerV1` respectively) in the same way and building that into the `Cluster` object. A particularly important configuration along these lines is easily overlooked when choosing to use GraphSON rather than GraphBinary. GraphBinary offers a bit of help in dynamically detecting available classpath items and will dynamically include `TinkerGraph` as a serialization target which allows the <<subgraph-step>> to work properly in remote contexts. GraphSON does not. When using GraphSON, you must manually include the `TinkerIoRegistryV3` in the configuration for the driver. [source,java]
GraphSONMapper.Builder builder = GraphSONMapper.build().addRegistry(TinkerIoRegistryV3.instance()); GraphSONMessageSerializerV3 serializer = new GraphSONMessageSerializerV3(builder); Cluster cluster = TestClientFactory.build().serializer(serializer).create(); Client client = cluster.connect(); GraphTraversalSource g = traversal().withRemote(DriverRemoteConnection.using(client, "g"));
IMPORTANT: Prefer GraphBinary over GraphSON when using the driver. If you do choose GraphSON, prefer GraphSON 3 and know that GraphSON 2 is not compatible with <<subgraph-step>. [[gremlin-java-gvalue]] === GValue Parameterization A `GValue` is an encapsulation of a parameter name and value. The GValue class has a series of static methods to construct GValues of various types from a given parameter name and value. Some of the most common examples are listed below, see the link:++https://tinkerpop.apache.org/javadocs/3.8.0-SNAPSHOT/full/org/apache/tinkerpop/gremlin/process/traversal/step/GValue.html#method.summary++[Javadocs] for a complete listing. [source,java]
GValue<String> stringArg = GValue.ofString("name", "value"); GValue<Integer> intArg = GValue.ofInteger("name", 1); GValue<Map> mapArg = GValue.ofMap("name", Collections.emptyMap()); GValue<?> autoTypedArg = GValue.of("name", "value"); // GValue will attempt to automatically detect correct type
A <<traversal-parameterization,subset of gremlin steps>> are able to accept `GValues`. When constructing a `GraphTraversal` with such steps in Java, a GValue may be passed in the traversal to utilize a parameter in place of a literal. [source,java]
g.V().has("name", GValue.ofString("name", "marko")); g.mergeV(GValue.ofMap("vertexPattern", Collections.singletonMap("name", "marko")));
[[gremlin-java-lambda]] === The Lambda Solution Supporting link:https://en.wikipedia.org/wiki/Anonymous_function[anonymous functions] across languages is difficult as most languages do not support lambda introspection and thus, code analysis. In Gremlin-Java and with <<connecting-embedded,embedded>> usage, lambdas can be leveraged directly: [source,java]
g.V().out("knows").map(t → t.get().value("name") + " is the friend name") <1> g.V().out("knows").sideEffect(System.out::println) <2> g.V().as("a").out("knows").as("b").select("b").byFunction<Vertex, Integer>) v → v.<String>value("name").length( <3>
<1> A Java `Function` is used to map a `Traverser<S>` to an object `E`. <2> Gremlin steps that take consumer arguments can be passed Java method references. <3> Gremlin-Java may sometimes require explicit lambda typing when types can not be automatically inferred. When sending traversals remotely to <<connecting-gremlin-server,Gremlin Server>> or <<connecting-rgp,Remote Gremlin Providers>>, the static methods of `Lambda` should be used and should denote a particular JSR-223 `ScriptEngine` that is available on the remote end (typically, this is Groovy). `Lambda` creates a string-based lambda that is then converted into a lambda/closure/anonymous-function/etc. by the respective lambda language's JSR-223 `ScriptEngine` implementation. [source,java]
g.V().out("knows").map(Lambda.function("it.get().value('name') + ' is the friend name'")) g.V().out("knows").sideEffect(Lambda.consumer("println it")) g.V().as("a").out("knows").as("b").select("b").by(Lambda.<Vertex,Integer>function("it.value('name').length()"))
Finally, Gremlin `Bytecode` that includes lambdas requires that the traversal be processed by the `ScriptEngine`. To avoid continued recompilation costs, it supports the encoding of bindings, which allow Gremlin Server to cache traversals that will be reused over and over again save that some parameterization may change. Thus, instead of translating, compiling, and then executing each submitted bytecode request, it is possible to simply execute. To express bindings in Java, use `Bindings`. [source,java]
b = Bindings.instance() g.V(b.of('id',1)).out('created').values('name').map{t → "name: " + t.get() } g.V(b.of('id',4)).out('created').values('name').map{t → "name: " + t.get() } g.V(b.of('id',4)).out('created').values('name').getBytecode() g.V(b.of('id',4)).out('created').values('name').getBytecode().getBindings() cluster.close()
Both traversals are abstractly defined as `g.V(id).out('created').values('name').map{t -> "name: " + t.get() }` and
thus, the first submission can be cached for faster evaluation on the next submission.
WARNING: It is generally advised to avoid lambda usage. Please consider <<a-note-on-lambdas,A Note On Lambdas>> for
more information.
[[gremlin-java-scripts]]
=== Submitting Scripts
image:gremlin-java.png[width=175,float=left] TinkerPop comes equipped with a reference client for Java-based
applications. It is referred to as `gremlin-driver`, which enables applications to send requests to Gremlin Server
and get back results.
Gremlin scripts are sent to the server from a `Client` instance. A `Client` is created as follows:
[source,java]
Cluster cluster = Cluster.open(); <1> Client client = cluster.connect(); <2>
<1> Opens a reference to `localhost` - note that there are many configuration options available in defining a `Cluster` object. <2> Creates a `Client` given the configuration options of the `Cluster`. Once a `Client` instance is ready, it is possible to issue some Gremlin Groovy scripts: [source,java]
ResultSet results = client.submit("[1,2,3,4]"); <1> results.stream().map(i → i.get(Integer.class) * 2); <2>
CompletableFuture<List<Result>> results = client.submit("[1,2,3,4]").all(); <3>
CompletableFuture<ResultSet> future = client.submitAsync("[1,2,3,4]"); <4>
Map<String,Object> params = new HashMap<>(); params.put("x",4); client.submit("[1,2,3,x]", params); <5>
<1> Submits a script that simply returns a `List` of integers. This method blocks until the request is written to the server and a `ResultSet` is constructed. <2> Even though the `ResultSet` is constructed, it does not mean that the server has sent back the results (or even evaluated the script potentially). The `ResultSet` is just a holder that is awaiting the results from the server. In this case, they are streamed from the server as they arrive. <3> Submit a script, get a `ResultSet`, then return a `CompletableFuture` that will be called when all results have been returned. <4> Submit a script asynchronously without waiting for the request to be written to the server. <5> Parameterized request are considered the most efficient way to send Gremlin to the server as they can be cached, which will boost performance and reduce resources required on the server. ==== Per Request Settings There are a number of overloads to `Client.submit()` that accept a `RequestOptions` object. The `RequestOptions` provide a way to include options that are specific to the request made with the call to `submit()`. A good use-case for this feature is to set a per-request override to the `evaluationTimeout` so that it only applies to the current request. [source,java]
Cluster cluster = Cluster.open(); Client client = cluster.connect(); RequestOptions options = RequestOptions.build().timeout(500).create(); List<Result> result = client.submit("g.V().repeat(both()).times(100)", options).all().get();
The preferred method for setting a per-request timeout for scripts is demonstrated above, but those familiar with bytecode may try `g.with(EVALUATION_TIMEOUT, 500)` within a script. Gremlin Server will respect timeouts set this way in scripts as well. With scripts of course, it is possible to send multiple traversals at once in the same script. In such events, the timeout for the request is interpreted as a sum of all timeouts identified in the script. [source,java]
RequestOptions options = RequestOptions.build().timeout(500).create();
List<Result> result = client.submit("g.with(EVALUATION_TIMEOUT, 500).addV().iterate();"
"g.addV().iterate();"
"g.with(EVALUATION_TIMEOUT, 500).addV();", options).all().get();
In the above example, `RequestOptions` defines a timeout of 500 milliseconds, but the script has three traversals with two internal settings for the timeout using `with()`. The request timeout used by the server will therefore be 1000 milliseconds (overriding the 500 which itself was an override for whatever configuration was on the server). ==== Aliases Scripts submitted to Gremlin Server automatically have the globally configured `Graph` and `TraversalSource` instances made available to them. Therefore, if Gremlin Server configures two `TraversalSource` instances called "g1" and "g2" a script can simply reference them directly as: [source,java]
client.submit("g1.V()") client.submit("g2.V()")
While this is an acceptable way to submit scripts, it has the downside of forcing the client to encode the server-side variable name directly into the script being sent. If the server configuration ever changed such that "g1" became "g100", the client-side code might have to see a significant amount of change. Decoupling the script code from the server configuration can be managed by the `alias` method on `Client` as follows: [source,java]
Client g1Client = client.alias("g1") Client g2Client = client.alias("g2") g1Client.submit("g.V()") g2Client.submit("g.V()")
The above code demonstrates how the `alias` method can be used such that the script need only contain a reference to "g" and "g1" and "g2" are automatically rebound into "g" on the server-side. [[gremlin-java-dsl]] === Domain Specific Languages Creating a <<dsl,Domain Specific Language>> (DSL) in Java requires the `@GremlinDsl` Java annotation in the `gremlin-annotations` module. This annotation should be applied to a "DSL interface" that extends `GraphTraversal.Admin`: [source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>gremlin-annotations</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
[source,java]
@GremlinDsl public interface SocialTraversalDsl<S, E> extends GraphTraversal.Admin<S, E> { }
IMPORTANT: The name of the DSL interface should be suffixed with "TraversalDSL". All characters in the interface name before that become the "name" of the DSL. In this interface, define the methods that the DSL will be composed of: [source,java]
@GremlinDsl public interface SocialTraversalDsl<S, E> extends GraphTraversal.Admin<S, E> { public default GraphTraversal<S, Vertex> knows(String personName) { return out("knows").hasLabel("person").has("name", personName); }
public default <E2 extends Number> GraphTraversal<S, E2> youngestFriendsAge() {
return out("knows").hasLabel("person").values("age").min();
}
public default GraphTraversal<S, Long> createdAtLeast(int number) {
return outE("created").count().is(P.gte(number));
}
}
IMPORTANT: Follow the TinkerPop convention of using `<S,E>` in naming generics as those conventions are taken into account when generating the anonymous traversal class. The processor attempts to infer the appropriate type parameters when generating the anonymous traversal class. If it cannot do it correctly, it is possible to avoid the inference by using the `GremlinDsl.AnonymousMethod` annotation on the DSL method. It allows explicit specification of the types to use. The `@GremlinDsl` annotation is used by the link:https://docs.oracle.com/javase/8/docs/api/index.html?javax/annotation/processing/Processor.html[Java Annotation Processor] to generate the boilerplate class structure required to properly use the DSL within the TinkerPop framework. These classes can be generated and maintained by hand, but it would be time consuming, monotonous and error-prone to do so. Typically, the Java compilation process is automatically configured to detect annotation processors on the classpath and will automatically use them when found. If that does not happen, it may be necessary to make configuration changes to the build to allow for the compilation process to be aware of the following `javax.annotation.processing.Processor` implementation: [source,java]
org.apache.tinkerpop.gremlin.process.traversal.dsl.GremlinDslProcessor
The annotation processor will generate several classes for the DSL: * `SocialTraversal` - A `Traversal` interface that extends the `SocialTraversalDsl` proxying methods to its underlying interfaces (such as `GraphTraversal`) to instead return a `SocialTraversal` * `DefaultSocialTraversal` - A default implementation of `SocialTraversal` (typically not used directly by the user) * `SocialTraversalSource` - Spawns `DefaultSocialTraversal` instances. * `__` - Spawns anonymous `DefaultSocialTraversal` instances. Using the DSL then just involves telling the `Graph` to use it: [source,java]
SocialTraversalSource social = traversal(SocialTraversalSource.class).with(graph); social.V().has("name","marko").knows("josh");
The `SocialTraversalSource` can also be customized with DSL functions. As an additional step, include a class that extends from `GraphTraversalSource` and with a name that is suffixed with "TraversalSourceDsl". Include in this class, any custom methods required by the DSL: [source,java]
public class SocialTraversalSourceDsl extends GraphTraversalSource {
public SocialTraversalSourceDsl(Graph graph, TraversalStrategies traversalStrategies) {
super(graph, traversalStrategies);
}
public SocialTraversalSourceDsl(Graph graph) {
super(graph);
}
public SocialTraversalSourceDsl(RemoteConnection connection) {
super(connection);
}
public GraphTraversal<Vertex, Vertex> persons(String... names) {
GraphTraversalSource clone = this.clone();
// Manually add a "start" step for the traversal in this case the equivalent of V(). GraphStep is marked // as a "start" step by passing "true" in the constructor. clone.getBytecode().addStep(GraphTraversal.Symbols.V); GraphTraversal<Vertex, Vertex> traversal = new DefaultGraphTraversal<>(clone); traversal.asAdmin().addStep(new GraphStep<>(traversal.asAdmin(), Vertex.class, true));
traversal = traversal.hasLabel("person");
if (names.length > 0) traversal = traversal.has("name", P.within(names));
return traversal;
}
}
Then, back in the `SocialTraversal` interface, update the `GremlinDsl` annotation with the `traversalSource` argument to point to the fully qualified class name of the `SocialTraversalSourceDsl`: [source,java]
@GremlinDsl(traversalSource = "com.company.SocialTraversalSourceDsl") public interface SocialTraversalDsl<S, E> extends GraphTraversal.Admin<S, E> { … }
It is then possible to use the `persons()` method to start traversals: [source,java]
SocialTraversalSource social = traversal(SocialTraversalSource.class).with(graph); social.persons("marko").knows("josh");
NOTE: Using Maven, as shown in the `gremlin-archetype-dsl` module, makes developing DSLs with the annotation processor straightforward in that it sets up appropriate paths to the generated code automatically. [[gremlin-java-troubleshooting]] === Troubleshooting *Max frame length of 65536 has been exceeded* This error occurs when the driver attempts to process a request/response that exceeds the configured maximum size. The most direct way to fix this problem is to increase the `maxContentLength` setting in the driver. Ideally, the `maxContentLength` set for the driver should match the setting defined on the server. *TimeoutException* A `TimeoutException` is thrown by the driver when the time limit assigned by the `maxWaitForConnection` is exceeded when trying to borrow a connection from the connection pool for a particular host. There are generally two scenarios where this occurs: 1. The server has actually reached its maximum capacity or the driver has just learned that the server is unreachable. 2. The client is throttling requests when the pool is exhausted. The latter of the two can be addressed from the driver side in the following ways: * Increase the `maxWaitForConnection` allowing the client to wait a bit longer for a connection to become available. * Increase the number of requests allowed per connection by increasing the `maxSimultaneousUsagePerConnection` and `maxInProcessPerConnection` settings. * Increase the number of connections available in the connection pool by increasing the `maxConnectionPoolSize`. The exception and logs (assuming they are enabled) should contain information about the state of the connection pool along with its connections which can help shed more light on which of these scenarios caused the problem. Some examples of these messages and their meaning are shown below: _The server is unavailable_ [source,text]
Timed-out (500 MILLISECONDS) waiting for connection on Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin}. Potential Cause: Connection refused: no further information > ConnectionPool (Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin})- no connections in pool
_Client is likely issuing more requests than the pool size can handle_ [source,text]
Timed-out (150 MILLISECONDS) waiting for connection on Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin}. Potential Cause: Number of active requests exceeds pool size. Consider increasing the value for maxConnectionPoolSize. ConnectionPool (Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin}) Connection Pool Status (size=1 max=1 min=1 toCreate=0 bin=0) > Connection{channel=5a859d62 isDead=false borrowed=1 pending=1 markedReplaced=false closing=false created=2022-12-19T21:08:21.569613100Z thread=gremlin-driver-conn-scheduler-1} — bin —
_Network traffic is slow and the websocket handshake does not complete in time_ [source,text]
Timed-out (250 MILLISECONDS) waiting for connection on Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin}. Potential Cause: WebSocket handshake not completed in stipulated time=[100]ms ConnectionPool (Host{address=localhost/127.0.0.1:45940, hostUri=ws://localhost:45940/gremlin}) Connection Pool Status (size=1 max=5 min=1 toCreate=0 bin=0) > Connection{channel=205fc8d2 isDead=false borrowed=1 pending=1 markedReplaced=false closing=false created=2022-12-19T21:10:04.692921600Z thread=gremlin-driver-conn-scheduler-1} — bin —
anchor:java-application-examples[]
anchor:gremlin-archetypes[]
[[gremlin-java-archetypes]]
=== Application Archetypes
The available link:https://maven.apache.org/guides/introduction/introduction-to-archetypes.html[Maven archetypes] are
as follows:
* `gremlin-archetype-dsl` - An example project that demonstrates how to build Domain Specific Languages with Gremlin
in Java.
* `gremlin-archetype-server` - An example project that demonstrates the basic structure of a
<<gremlin-server,Gremlin Server>> project, how to connect with the Gremlin Driver, and how to embed Gremlin Server in
a testing framework.
* `gremlin-archetype-tinkergraph` - A basic example of how to structure a TinkerPop project with Maven.
Use Maven to generate these example projects with a command like:
[source,shell]
$ mvn archetype:generate -DarchetypeGroupId=org.apache.tinkerpop -DarchetypeArtifactId=gremlin-archetype-server \
-DarchetypeVersion=3.8.0-SNAPSHOT -DgroupId=com.my -DartifactId=app -Dversion=0.1 -DinteractiveMode=false
This command will generate a new Maven project in a directory called "app" with a `pom.xml` specifying a `groupId` of
`com.my`. Please see the `README.asciidoc` in the root of each generated project for information on how to build and
execute it.
[[gremlin-java-examples]]
=== Application Examples
The TinkerPop source code contains some sample applications that demonstrate the basics of Gremlin-Java. They
can be found in GitHub link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/glv-examples/gremlin-java/[here]
and are designed to connect to a running <<gremlin-server,Gremlin Server>> configured with the
`conf/gremlin-server.yaml` and `conf/gremlin-server-modern.yaml` files as included with the standard release packaging.
This guide assumes Gremlin Server will be executed using Docker. Alternatively, Gremlin Server can run locally (see
the <<gremlin-server,Gremlin Server>> documentation for this option).
To start Gremlin Server using Docker, first download an image of Gremlin Server from Docker Hub:
[source,shell]
docker pull tinkerpop/gremlin-server
Clean server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server
Modern toy graph server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server conf/gremlin-server-modern.yaml
The remote connection and basic Gremlin examples can be run on a clean server, while traversal examples should be run on a server with the Modern graph preloaded. ==== Prerequisites - Compatible JDK installed (see <<development-environment,Development Environment>> for supported versions) - Maven installed Navigate to the examples directory: [source,shell]
cd glv-examples/gremlin-java
Build the examples with Maven: [source,shell]
mvn clean install
Run the examples: [source,shell]
java -cp target/run-examples-shaded.jar examples.Connections java -cp target/run-examples-shaded.jar examples.BasicGremlin java -cp target/run-examples-shaded.jar examples.ModernTraversals
[[gremlin-java-differences]]
=== Differences
Gremlin-Java provides additional syntactic sugar that leverages Java's type system for the `P.typeOf()` predicate,
which accepts Java `Class` objects directly, providing a more natural way to perform type checking:
++++
<section class="tabs tabs-2">
<input id="tab-1761594964-6" type="radio" name="radio-set-1761594964-6" class="tab-selector-1" checked="checked" />
<label for="tab-1761594964-6" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594964-7" type="radio" name="radio-set-1761594964-6" class="tab-selector-2" />
<label for="tab-1761594964-7" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> // Java-specific syntax using Class objects =⇒true gremlin> g.V().values("age").is(P.typeOf(Integer.class)) =⇒29 =⇒27 =⇒32 =⇒35 gremlin> g.V().values("name").is(P.typeOf(String.class)) =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter gremlin> gremlin> // Further simplification with Groovy sugar syntax =⇒true gremlin> g.E().has("weight", P.typeOf(Double)) =⇒e[7][1-knows→2] =⇒e[8][1-knows→4] =⇒e[9][1-created→3] =⇒e[10][4-created→5] =⇒e[11][4-created→3] =⇒e[12][6-created→3]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V().values("age").is(P.typeOf(Integer.class)) g.V().values("name").is(P.typeOf(String.class))
g.E().has("weight", P.typeOf(Double))
++++
</div>
</div>
</section>
++++
This is equivalent to using `GType` enums. Other Gremlin language variants must use the canonical `GType` enum approach:
++++
<section class="tabs tabs-2">
<input id="tab-1761594964-8" type="radio" name="radio-set-1761594964-8" class="tab-selector-1" checked="checked" />
<label for="tab-1761594964-8" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594964-9" type="radio" name="radio-set-1761594964-8" class="tab-selector-2" />
<label for="tab-1761594964-9" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> // Canonical syntax available in all languages =⇒true gremlin> g.V().values("age").is(P.typeOf(GType.INT)) =⇒29 =⇒27 =⇒32 =⇒35 gremlin> g.V().values("name").is(P.typeOf(GType.STRING)) =⇒marko =⇒vadas =⇒lop =⇒josh =⇒ripple =⇒peter
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.V().values("age").is(P.typeOf(GType.INT)) g.V().values("name").is(P.typeOf(GType.STRING))
++++
</div>
</div>
</section>
++++
Any valid Java class accepted in the Console and with embedded Java is also accepted by `P.typeOf()`, as they are not
restricted by the grammar or serialization.
++++
<section class="tabs tabs-2">
<input id="tab-1761594964-10" type="radio" name="radio-set-1761594964-10" class="tab-selector-1" checked="checked" />
<label for="tab-1761594964-10" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594964-11" type="radio" name="radio-set-1761594964-10" class="tab-selector-2" />
<label for="tab-1761594964-11" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> // Using java.awt.Color for example =⇒true gremlin> g.inject(java.awt.Color.red) =⇒java.awt.Color[r=255,g=0,b=0] gremlin> g.inject(java.awt.Color.red, "hi", 123).is(P.typeOf(java.awt.Color)) =⇒java.awt.Color[r=255,g=0,b=0]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.inject(java.awt.Color.red) g.inject(java.awt.Color.red, "hi", 123).is(P.typeOf(java.awt.Color))
++++
</div>
</div>
</section>
++++
[[gremlin-javascript]]
== Gremlin-JavaScript
image:gremlin-js.png[width=130,float=right] Apache TinkerPop's Gremlin-JavaScript implements Gremlin within the
JavaScript language. It targets Node.js runtime and can be used on different operating systems on any Node.js 6 or
above. Since the JavaScript naming conventions are very similar to that of Java, it should be very easy to switch
between Gremlin-Java and Gremlin-JavaScript.
[source,bash]
npm install gremlin
[[gremlin-javascript-connecting]]
=== Connecting
The pattern for connecting is described in <<connecting-gremlin,Connecting Gremlin>> and it basically distills down to
creating a `GraphTraversalSource`. A `GraphTraversalSource` is created from the `AnonymousTraversalSource.traversal()`
method where the "g" provided to the `DriverRemoteConnection` corresponds to the name of a `GraphTraversalSource` on
the remote end.
[source,javascript]
const g = traversal().with(new DriverRemoteConnection('ws://localhost:8182/gremlin'));
Gremlin-JavaScript supports plain text SASL authentication, you can set it on the connection options. [source,javascript]
const authenticator = new gremlin.driver.auth.PlainTextSaslAuthenticator('myuser', 'mypassword'); const g = traversal().with(new DriverRemoteConnection('ws://localhost:8182/gremlin', { authenticator });
Given that I/O operations in Node.js are asynchronous by default, <<terminal-steps,Terminal Steps>> return a `Promise`:
* `Traversal.toList()`: Returns a `Promise` with an `Array` as result value.
* `Traversal.next()`: Returns a `Promise` with a `{ value, done }` tuple as result value, according to the
link:https://github.com/tc39/proposal-async-iteration[async iterator proposal].
* `Traversal.iterate()`: Returns a `Promise` without a value.
For example:
[source,javascript]
g.V().hasLabel('person').values('name').toList() .then(names ⇒ console.log(names));
When using `async` functions it is possible to `await` the promises: [source,javascript]
const names = await g.V().hasLabel('person').values('name').toList(); console.log(names);
Some connection options can also be set on individual requests made through the using `with()` step on the `TraversalSource`. For instance to set request timeout to 500 milliseconds: [source,javascript]
const vertices = await g.with_('evaluationTimeout', 500).V().out('knows').toList()
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). [[gremlin-javascript-imports]] === Common Imports There are a number of classes, functions and tokens that are typically used with Gremlin. The following imports provide most of the typical functionality required to use Gremlin: [source,javascript]
const gremlin = require('gremlin'); const traversal = gremlin.process.AnonymousTraversalSource.traversal; const _ = gremlin.process.statics; const DriverRemoteConnection = gremlin.driver.DriverRemoteConnection; const column = gremlin.process.column const direction = gremlin.process.direction const Direction = { BOTH: direction.both, IN: direction.in, OUT: direction.out, from: direction.out, to: direction.in, } const p = gremlin.process.P const textp = gremlin.process.TextP const pick = gremlin.process.pick const pop = gremlin.process.pop const order = gremlin.process.order const scope = gremlin.process.scope const t = gremlin.process.t const cardinality = gremlin.process.cardinality const CardinalityValue = gremlin.process.CardinalityValue
By defining these imports it becomes possible to write Gremlin in the more shorthand, canonical style that is demonstrated in most examples found here in the documentation: [source,javascript]
const { P: { gt } } = gremlin.process; const { order: { desc } } = gremlin.process; g.V().hasLabel('person').has('age',gt(30)).order().by('age',desc).toList()
[[gremlin-javascript-configuration]]
=== Configuration
The following table describes the various configuration options for the Gremlin-Javascript Driver. They
can be passed in the constructor of a new `Client` or `DriverRemoteConnection` :
[width="100%",cols="3,3,10,^2",options="header"]
|=========================================================
|Key |Type |Description |Default
|url |String |The resource uri. |None
|options |Object |The connection options. |{}
|options.ca |Array |Trusted certificates. |undefined
|options.cert |String/Array/Buffer |The certificate key. |undefined
|options.mimeType |String |The mime type to use. |'application/vnd.gremlin-v3.0+json'
|options.pfx |String/Buffer |The private key, certificate, and CA certs. |undefined
|options.reader |GraphSONReader/GraphBinaryReader |The reader to use. |select reader according to mimeType
|options.writer |GraphSONWriter |The writer to use. |select writer according to mimeType
|options.rejectUnauthorized |Boolean |Determines whether to verify or not the server certificate. |undefined
|options.traversalSource |String |The traversal source. |'g'
|options.authenticator |Authenticator |The authentication handler to use. |undefined
|options.processor |String |The name of the opProcessor to use, leave it undefined or set 'session' when session mode. |undefined
|options.session |String |The sessionId of Client in session mode. undefined means session-less Client. |undefined
|options.enableCompression |Boolean |Enables permessage-deflate compression. Note that use of compression may increase vulnerability to attacks such as CRIME/BREACH.|false
|options.enableUserAgentOnConnect |Boolean |Determines if a user agent will be sent during connection handshake. |true
|options.headers |Object |An associative array containing the additional header key/values for the initial request. |undefined
|options.pingEnabled |Boolean |Setup ping interval. |true
|options.pingInterval |Number |Ping request interval in ms if ping enabled. |60000
|options.pongTimeout |Number |Timeout of pong response in ms after sending a ping. |30000
|=========================================================
[[gremlin-javascript-strategies]]
=== Traversal Strategies
In order to add and remove <<traversalstrategy,traversal strategies>> from a traversal source, Gremlin-Javascript has a
`TraversalStrategy` class along with a collection of subclasses that mirror the standard Gremlin-Java strategies.
[source,javascript]
g.withoutStrategies(InlineFilterStrategy);
g.withStrategies(new InlineFilterStrategy());
g.withStrategies(new SeedStrategy({seed: 99999}))
NOTE: Many of the `TraversalStrategy` classes in Gremlin-Javascript are proxies to the respective strategy on Apache TinkerPop's JVM-based Gremlin traversal machine. As such, their `apply(Traversal)` method does nothing. However, the strategy is encoded in the Gremlin-Javascript bytecode and transmitted to the Gremlin traversal machine for re-construction machine-side. [[gremlin-javascript-transactions]] === Transactions To get a full understanding of this section, it would be good to start by reading the <<transactions,Transactions>> section of this documentation, which discusses transactions in the general context of TinkerPop itself. This section builds on that content by demonstrating the transactional syntax for Javascript. [source,javascript]
const g = traversal().with(new DriverRemoteConnection('ws://localhost:8182/gremlin')); const tx = g.tx(); // create a Transaction
const gtx = tx.begin();
Promise.all([ gtx.addV("person").property("name", "jorge").iterate(), gtx.addV("person").property("name", "josh").iterate() ]).then(() ⇒ { return tx.commit(); }).catch(() ⇒ { return tx.rollback(); });
[[gremlin-javascript-lambda]] === The Lambda Solution Supporting link:https://en.wikipedia.org/wiki/Anonymous_function[anonymous functions] across languages is difficult as most languages do not support lambda introspection and thus, code analysis. In Gremlin-Javascript, a Gremlin lambda should be represented as a zero-arg callable that returns a string representation of the lambda expected for use in the traversal. The returned lambda should be written as a Gremlin-Groovy string. When the lambda is represented in `Bytecode` its language is encoded such that the remote connection host can infer which translator and ultimate execution engine to use. [source,javascript]
g.V().out(). map) ⇒ "it.get().value('name').length()"). sum(). toList().then(total ⇒ console.log(total
TIP: When running into situations where Groovy cannot properly discern a method signature based on the `Lambda`
instance created, it will help to fully define the closure in the lambda expression - so rather than
`() => "it.get().value('name')"`, prefer `() => "x -> x.get().value('name')"`.
WARNING: As explained throughout the documentation, when possible <<a-note-on-lambdas,avoid>> lambdas.
[[gremlin-javascript-scripts]]
=== Submitting Scripts
It is possible to submit parametrized Gremlin scripts to the server as strings, using the `Client` class:
[source,javascript]
const gremlin = require('gremlin'); const client = new gremlin.driver.Client('ws://localhost:8182/gremlin', { traversalSource: 'g' });
const result1 = await client.submit('g.V(vid)', { vid: 1 }); const vertex = result1.first();
const result2 = await client.submit('g.V().hasLabel(label).tail(n)', { label: 'person', n: 3 });
for (const vertex of result2) { console.log(vertex.id); }
It is also possible to initialize the `Client` to use <<sessions,sessions>>: [source,javascript]
const client = new gremlin.driver.Client('ws://localhost:8182/gremlin', { traversalSource: 'g', 'session': 'unique-string-id' });
With this configuration, the state of variables within scripts are preserved between requests. ==== Per Request Settings The `client.submit()` functions accept a `requestOptions` which expects a dictionary. The `requestOptions` provide a way to include options that are specific to the request made with the call to `submit()`. A good use-case for this feature is to set a per-request override to the `evaluationTimeout` so that it only applies to the current request. [source,javascript]
const result = await client.submit("g.V().repeat(both()).times(100)", null, { evaluationTimeout: 5000 })
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent`, `materializeProperties` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). IMPORTANT: The preferred method for setting a per-request timeout for scripts is demonstrated above, but those familiar with bytecode may try `g.with(EVALUATION_TIMEOUT, 500)` within a script. Scripts with multiple traversals and multiple timeouts will be interpreted as a sum of all timeouts identified in the script for that request. ==== Processing results as they are returned from the Gremlin server The Gremlin JavaScript driver maintains a WebSocket connection to the Gremlin server and receives messages according to the `batchSize` parameter on the per request settings or the `resultIterationBatchSize` value configured for the Gremlin server. When submitting scripts the default behavior is to wait for the entire result set to be returned from a query before allowing any processing on the result set. The following examples assume that you have 100 vertices in your graph. [source,javascript]
const result = await client.submit("g.V()"); console.log(result.toArray()); // 100 - all the vertices in your graph
When working with larger result sets it may be beneficial for memory management to process each chunk of data as it is returned from the gremlin server. The Gremlin JavaScript driver can return a readable stream instead of waiting for the entire result set to be loaded. [source,javascript]
const readable = client.stream("g.V()", {}, { batchSize: 25 });
readable.on('data', (data) ⇒ { console.log(data.toArray()); // 25 vertices })
readable.on('error', (error) ⇒ { console.log(error); // errors returned from gremlin server })
readable.on('end', () ⇒ { console.log('query complete'); // when the end event is received then all the results have been processed })
If you are using NodeJS >= 10.0, you can asynchronously iterate readable streams: [source,javascript]
const readable = client.stream("g.V()", {}, { batchSize: 25 });
try { for await (const result of readable) { console.log('data', result.toArray()); // 25 vertices } } catch (err) { console.log(err); }
[[gremlin-javascript-dsl]] === Domain Specific Languages Developing Gremlin DSLs in JavaScript largely requires extension of existing core classes with use of standalone functions for anonymous traversal spawning. The pattern is demonstrated in the following example: [source,javascript]
class SocialTraversal extends GraphTraversal { constructor(graph, traversalStrategies, bytecode) { super(graph, traversalStrategies, bytecode); }
aged(age) {
return this.has('person', 'age', age);
}
}
class SocialTraversalSource extends GraphTraversalSource { constructor(graph, traversalStrategies, bytecode) { super(graph, traversalStrategies, bytecode, SocialTraversalSource, SocialTraversal); }
person(name) {
return this.V().has('person', 'name', name);
}
}
function anonymous() { return new SocialTraversal(null, null, new Bytecode()); }
function aged(age) { return anonymous().aged(age); }
`SocialTraversal` extends the core `GraphTraversal` class and has a three argument constructor which is immediately proxied to the `GraphTraversal` constructor. New DSL steps are then added to this class using available steps to construct the underlying traversal to execute as demonstrated in the `aged()` step. The `SocialTraversal` is spawned from a `SocialTraversalSource` which is extended from `GraphTraversalSource`. Steps added here are meant to be start steps. In the above case, the `person()` start step find a "person" vertex to begin the traversal from. Typically, steps that are made available on a `GraphTraversal` (i.e. SocialTraversal in this example) should also be made available as spawns for anonymous traversals. The recommendation is that these steps be exposed in the module as standalone functions. In the example above, the standalone `aged()` step creates an anonymous traversal through an `anonymous()` utility function. The method for creating these standalone functions can be handled in other ways if desired. To use the DSL, simply initialize the `g` as follows: [source,javascript]
const g = traversal(SocialTraversalSource).with(connection); g.person('marko').aged(29).values('name').toList(). then(names ⇒ console.log(names));
[[javascript-differences]] [[gremlin-javascript-differences]] === Differences In situations where Javascript reserved words and global functions overlap with standard Gremlin steps and tokens, those bits of conflicting Gremlin get an underscore appended as a suffix: *Steps* - <<from-step,from_()>>, <<in-step,in_()>>, <<with-step,with_()>> *Tokens* - `Direction.from_` In addition, the enum construct for `Cardinality` cannot have functions attached to it the way it can be done in Java, therefore cardinality functions that take a value like `list()`, `set()`, and `single()` are referenced from a `CardinalityValue` class rather than `Cardinality` itself. Gremlin allows for `Map` instances to include `null` keys, but `null` keys in Javascript have some interesting behavior as in: [source,text]
var a = { null: 'something', 'b': 'else' }; JSON.stringify(a) '{"null":"something","b":"else"}' JSON.parse(JSON.stringify(a)) { null: 'something', b: 'else' } a[null] 'something' a['null'] 'something'
This behavior needs to be considered when using Gremlin to return such results. A typical situation where this might happen is with `group()` or `groupCount()` as in: [source,javascript]
g.V().groupCount().by('age')
where "age" is not a valid key for all vertices. In these cases, it will return `null` for that key and group on that. It may bet better in Javascript to filter away those vertices to avoid the return of `null` in the returned `Map`: [source,javascript]
g.V().has('age').groupCount().by('age') g.V().hasLabel('person').groupCount().by('age')
Either of the above two options accomplishes the desired goal as both prevent `groupCount()` from having to process the possibility of `null`. [[gremlin-javascript-limitations]] === Limitations * The `subgraph()`-step is not supported by any variant that is not running on the Java Virtual Machine as there is no `Graph` instance to deserialize a result into on the client-side. A workaround is to replace the step with `aggregate(local)` and then convert those results to something the client can use locally. [[gremlin-javascript-examples]] === Application Examples The TinkerPop source code contains some sample applications that demonstrate the basics of Gremlin-JavaScript. They can be found in GitHub link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/glv-examples/gremlin-javascript/[here] and are designed to connect to a running <<gremlin-server,Gremlin Server>> configured with the `conf/gremlin-server.yaml` and `conf/gremlin-server-modern.yaml` files as included with the standard release packaging. This guide assumes Gremlin Server will be executed using Docker. Alternatively, Gremlin Server can run locally (see the <<gremlin-server,Gremlin Server>> documentation for this option). To start Gremlin Server using Docker, first download an image of Gremlin Server from Docker Hub: [source,shell]
docker pull tinkerpop/gremlin-server
Clean server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server
Modern toy graph server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server conf/gremlin-server-modern.yaml
The remote connection and basic Gremlin examples can be run on a clean server, while traversal examples should be run on a server with the Modern graph preloaded. ==== Prerequisites - Compatible Node.js installed (see <<development-environment,Development Environment>> for supported versions) - npm installed Navigate to the examples directory: [source,shell]
cd glv-examples/gremlin-javascript
Install the dependencies: [source,shell]
npm install
Run the examples: [source,shell]
node connections.js node basic-gremlin.js node modern-traversals.js
anchor:gremlin-DotNet[] [[gremlin-dotnet]] == Gremlin.Net image:gremlin-dotnet-logo.png[width=371,float=right] Apache TinkerPop's Gremlin.Net implements Gremlin within the C# language. It targets .NET Standard and can therefore be used on different operating systems and with different .NET frameworks, such as .NET Framework and link:https://www.microsoft.com/net/core[.NET Core]. Since the C# syntax is very similar to that of Java, it should be easy to switch between Gremlin-Java and Gremlin.Net. The only major syntactical difference is that all method names in Gremlin.Net use PascalCase as opposed to camelCase in Gremlin-Java in order to comply with .NET conventions. [source,powershell] nuget install Gremlin.Net [[gremlin-dotnet-connecting]] === Connecting The pattern for connecting is described in <<connecting-gremlin,Connecting Gremlin>> and it basically distills down to creating a `GraphTraversalSource`. A `GraphTraversalSource` is created from the `AnonymousTraversalSource.traversal()` method where the "g" provided to the `DriverRemoteConnection` corresponds to the name of a `GraphTraversalSource` on the remote end. [source,csharp]
using var remoteConnection = new DriverRemoteConnection(new GremlinClient(new GremlinServer("localhost", 8182)), "g"); var g = Traversal().With(remoteConnection);
Some connection options can also be set on individual requests using the `With()` step on the `TraversalSource`. For instance to set request timeout to 500 milliseconds: [source,csharp]
var l = g.With(Tokens.ArgsEvalTimeout, 500).V().Out("knows").Count().ToList();
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). These options are available as constants on the `Gremlin.Net.Driver.Tokens` class. [[gremlin-dotnet-imports]] === Common Imports There are a number of classes, functions and tokens that are typically used with Gremlin. The following imports provide most of the typical functionality required to use Gremlin: [source,csharp]
using static Gremlin.Net.Process.Traversal.AnonymousTraversalSource; using static Gremlin.Net.Process.Traversal.__; using static Gremlin.Net.Process.Traversal.P; using static Gremlin.Net.Process.Traversal.Order; using static Gremlin.Net.Process.Traversal.Operator; using static Gremlin.Net.Process.Traversal.Pop; using static Gremlin.Net.Process.Traversal.Scope; using static Gremlin.Net.Process.Traversal.TextP; using static Gremlin.Net.Process.Traversal.Column; using static Gremlin.Net.Process.Traversal.Direction; using static Gremlin.Net.Process.Traversal.Cardinality; using static Gremlin.Net.Process.Traversal.CardinalityValue; using static Gremlin.Net.Process.Traversal.T;
[[gremlin-dotnet-configuration]] === Configuration The connection properties for the Gremlin.Net driver can be passed to the `GremlinServer` instance as keyword arguments: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |hostname |The hostname that the driver will connect to. |localhost |port |The port on which Gremlin Server can be reached. |8182 |enableSsl |Determines if SSL should be enabled or not. If enabled on the server then it must be enabled on the client. |false |username |The username to submit on requests that require authentication. |_none_ |password |The password to submit on requests that require authentication. |_none_ |========================================================= ==== Connection Pool It is also possible to configure the `ConnectionPool` of the Gremlin.Net driver. These configuration options can be set as properties on the `ConnectionPoolSettings` instance that can be passed to the `GremlinClient`: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |PoolSize |The size of the connection pool. |4 |MaxInProcessPerConnection |The maximum number of in-flight requests that can occur on a connection. |32 |ReconnectionAttempts |The number of attempts to get an open connection from the pool to submit a request. |4 |ReconnectionBaseDelay |The base delay used for the exponential backoff for the reconnection attempts. |1 s |EnableUserAgentOnConnect |Enables sending a user agent to the server during connection requests. More details can be found in provider docs link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#_graph_driver_provider_requirements[here].|true |========================================================= A `NoConnectionAvailableException` is thrown if all connections have reached the `MaxInProcessPerConnection` limit when a new request comes in. A `ServerUnavailableException` is thrown if no connection is available to the server to submit a request after `ReconnectionAttempts` retries. ==== WebSocket Configuration The WebSocket connections can also be configured, directly as parameters of the `GremlinClient` constructor. It takes an optional delegate `webSocketConfiguration` that will be invoked for each connection. This makes it possible to configure more advanced options like the `KeepAliveInterval` or client certificates. Starting with .NET 6, it is also possible to use compression for WebSockets. This is enabled by default starting with TinkerPop 3.5.3 (again, only on .NET 6 or higher). Note that compression might make an application susceptible to attacks like CRIME/BREACH. Compression should therefore be turned off if the application sends sensitive data to the server as well as data that could potentially be controlled by an untrusted user. Compression can be disabled via the `disableCompression` parameter. [[gremlin-dotnet-logging]] === Logging It is possible to enable logging for the Gremlin.Net driver by providing an `ILoggerFactory` (from the `Microsoft.Extensions.Logging.Abstractions` package) to the `GremlinClient` constructor: [source,csharp]
var loggerFactory = LoggerFactory.Create(builder ⇒ { builder.AddConsole(); }); var client = new GremlinClient(new GremlinServer("localhost", 8182), loggerFactory: loggerFactory);
[[gremlin-dotnet-serialization]] === Serialization The Gremlin.Net driver uses by default GraphBinary but it is also possible to use another serialization format by passing a message serializer when creating the `GremlinClient`. GraphSON 3.0 can be configured like this: [source,csharp]
var client = new GremlinClient(new GremlinServer("localhost", 8182), new GraphSON3MessageSerializer());
and GraphSON 2.0 like this: [source,csharp]
var client = new GremlinClient(new GremlinServer("localhost", 8182), new GraphSON2MessageSerializer());
[[gremlin-dotnet-strategies]] === Traversal Strategies In order to add and remove traversal strategies from a traversal source, Gremlin.Net has an `AbstractTraversalStrategy` class along with a collection of subclasses that mirror the standard Gremlin-Java strategies. [source,csharp]
g = g.WithStrategies(new SubgraphStrategy(vertices: HasLabel("person"), edges: Has("weight", Gt(0.5)))); var names = g.V().Values<string>("name").ToList(); // names: [marko, vadas, josh, peter]
g = g.WithoutStrategies(typeof(SubgraphStrategy)); names = g.V().Values<string>("name").ToList(); // names: [marko, vadas, lop, josh, ripple, peter]
var edgeValueMaps = g.V().OutE().ValueMap<object, object>().With(WithOptions.Tokens).ToList();
g = g.WithComputer(workers: 2, vertices: Has("name", "marko")); names = g.V().Values<string>("name").ToList(); // names: [marko]
edgeValueMaps = g.V().OutE().ValueMap<object, object>().With(WithOptions.Tokens).ToList();
NOTE: Many of the TraversalStrategy classes in Gremlin.Net are proxies to the respective strategy on Apache TinkerPop’s JVM-based Gremlin traversal machine. As such, their `Apply(ITraversal)` method does nothing. However, the strategy is encoded in the Gremlin.Net bytecode and transmitted to the Gremlin traversal machine for re-construction machine-side. [[gremlin-dotnet-transactions]] === Transactions To get a full understanding of this section, it would be good to start by reading the <<transactions,Transactions>> section of this documentation, which discusses transactions in the general context of TinkerPop itself. This section builds on that content by demonstrating the transactional syntax for C#. [source,csharp]
using var gremlinClient = new GremlinClient(new GremlinServer("localhost", 8182)); var g = Traversal().With(new DriverRemoteConnection(gremlinClient)); var tx = g.Tx(); // create a transaction
var gtx = tx.Begin();
try { await gtx.AddV("person").Property("name", "jorge").Promise(t ⇒ t.Iterate()); await gtx.AddV("person").Property("name", "josh").Promise(t ⇒ t.Iterate()); await tx.CommitAsync(); } catch (Exception) { await tx.RollbackAsync(); }
[[gremlin-dotnet-lambda]] === The Lambda Solution Supporting link:https://en.wikipedia.org/wiki/Anonymous_function[anonymous functions] across languages is difficult as most languages do not support lambda introspection and thus, code analysis. While Gremlin.Net doesn't support C# lambdas, it is still able to represent lambdas in other languages. When the lambda is represented in `Bytecode` its language is encoded such that the remote connection host can infer which translator and ultimate execution engine to use. [source,csharp]
g.V().Out().Map<int>(Lambda.Groovy("it.get().value('name').length()")).Sum<int>().ToList(); <1> g.V().Out().Map<int>(Lambda.Python("lambda x: len(x.get().value('name'))")).Sum<int>().ToList(); <2>
<1> `Lambda.Groovy()` can be used to create a Groovy lambda.
<2> `Lambda.Python()` can be used to create a Python lambda.
The `ILambda` interface returned by these two methods inherits interfaces like `IFunction` and `IPredicate` that mirror
their Java counterparts which makes it possible to use lambdas with Gremlin.Net for the same steps as in Gremlin-Java.
TIP: When running into situations where Groovy cannot properly discern a method signature based on the `Lambda`
instance created, it will help to fully define the closure in the lambda expression - so rather than
`Lambda.Groovy("it.get().value('name'))`, prefer `Lambda.Groovy("x -> x.get().value('name'))`.
[[gremlin-dotnet-scripts]]
=== Submitting Scripts
Gremlin scripts are sent to the server from a `IGremlinClient` instance. A `IGremlinClient` is created as follows:
[source,csharp]
var gremlinServer = new GremlinServer("localhost", 8182); using var gremlinClient = new GremlinClient(gremlinServer);
var response = await gremlinClient.SubmitWithSingleResultAsync<string>("g.V().has('person','name','marko')");
If the remote system has authentication and SSL enabled, then the `GremlinServer` object can be configured as follows: [source,csharp]
var username = "username"; var password = "password"; var gremlinServer = new GremlinServer("localhost", 8182, true, username, password);
It is also possible to initialize the `Client` to use <<sessions,sessions>>: [source,csharp]
var gremlinServer = new GremlinServer("localhost", 8182); var client = new GremlinClient(gremlinServer, sessionId: Guid.NewGuid().ToString()))
==== Per Request Settings The `GremlinClient.Submit()` functions accept an option to build a raw `RequestMessage`. A good use-case for this feature is to set a per-request override to the `evaluationTimeout` so that it only applies to the current request. [source,csharp]
var gremlinServer = new GremlinServer("localhost", 8182); using var gremlinClient = new GremlinClient(gremlinServer);
var response = await gremlinClient.SubmitWithSingleResultAsync<string>( RequestMessage.Build(Tokens.OpsEval). AddArgument(Tokens.ArgsGremlin, "g.V().count()"). AddArgument(Tokens.ArgsEvalTimeout, 500). Create());
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent`, `materializeProperties` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). These options are available as constants on the `Gremlin.Net.Driver.Tokens` class. IMPORTANT: The preferred method for setting a per-request timeout for scripts is demonstrated above, but those familiar with bytecode may try `g.with(EVALUATION_TIMEOUT, 500)` within a script. Scripts with multiple traversals and multiple timeouts will be interpreted as a sum of all timeouts identified in the script for that request. anchor:gremlin-net-dsl[] [[gremlin-dotnet-dsl]] === Domain Specific Languages Developing a <<dsl,Domain Specific Language>> (DSL) for .Net is most easily implemented using link:https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods[Extension Methods] as they don't require direct extension of classes in the TinkerPop hierarchy. Extension Method classes simply need to be constructed for the `GraphTraversal` and the `GraphTraversalSource`. Unfortunately, anonymous traversals (spawned from `+__+`) can't use the Extension Method approach as they do not work for static classes and static classes can't be extended. The only option is to re-implement the methods of `+__+` as a wrapper in the anonymous traversal for the DSL or to simply create a static class for the DSL and use the two anonymous traversals creators independently. The following example uses the latter approach as it saves a lot of boilerplate code with the minor annoyance of having a second static class to deal with when writing traversals rather than just calling `+__+` for everything. [source,csharp]
namespace Dsl { public static class SocialTraversalExtensions { public static GraphTraversal<Vertex,Vertex> Knows(this GraphTraversal<Vertex,Vertex> t, string personName) { return t.Out("knows").HasLabel("person").Has("name", personName); }
public static GraphTraversal<Vertex, int> YoungestFriendsAge(this GraphTraversal<Vertex,Vertex> t)
{
return t.Out("knows").HasLabel("person").Values<int>("age").Min<int>();
}
public static GraphTraversal<Vertex,long> CreatedAtLeast(this GraphTraversal<Vertex,Vertex> t, long number)
{
return t.OutE("created").Count().Is(P.Gte(number));
}
}
public static class __Social
{
public static GraphTraversal<object,Vertex> Knows(string personName)
{
return __.Out("knows").HasLabel("person").Has("name", personName);
}
public static GraphTraversal<object, int> YoungestFriendsAge()
{
return __.Out("knows").HasLabel("person").Values<int>("age").Min<int>();
}
public static GraphTraversal<object,long> CreatedAtLeast(long number)
{
return __.OutE("created").Count().Is(P.Gte(number));
}
}
public static class SocialTraversalSourceExtensions
{
public static GraphTraversal<Vertex,Vertex> Persons(this GraphTraversalSource g, params string[] personNames)
{
GraphTraversal<Vertex,Vertex> t = g.V().HasLabel("person");
if (personNames.Length > 0)
{
t = t.Has("name", P.Within(personNames));
}
return t;
}
}
}
Note the creation of `__Social` as the Social DSL's "extension" to the available ways in which to spawn anonymous traversals. The use of the double underscore prefix in the name is just a convention to consider using and is not a requirement. To use the DSL, bring it into scope with the `using` directive: [source,csharp]
using Dsl; using static Dsl.__Social;
and then it can be called from the application as follows: [source,csharp]
var connection = new DriverRemoteConnection(new GremlinClient(new GremlinServer("localhost", 8182))); var social = Traversal().With(connection);
social.Persons("marko").Knows("josh"); social.Persons("marko").YoungestFriendsAge(); social.Persons().Filter(CreatedAtLeast(2)).Count();
anchor:gremlin-net-differences[] [[gremlin-dotnet-differences]] === Differences The biggest difference between Gremlin in .NET and the canonical version in Java is the casing of steps. Canonical Gremlin utilizes `camelCase` as is typical in Java for function names, but C# utilizes `PascalCase` as it is more typical in that language. Therefore, when viewing a typical Gremlin example written in Gremlin Console, the conversion to C# usually just requires capitalization of the first letter in the step name, thus the following example in Groovy: [source,groovy]
g.V().has('person','name','marko'). out('knows'). elementMap().toList()
would become the following in C#: [source,csharp]
g.V().Has("Person","name","marko"). Out("knows"). ElementMap().ToList();
In addition to the uppercase change, also note the conversion of the single quotes to double quotes as is expected for declaring string values in C# and the addition of the semi-colon at the end of the line. In short, don't forget to apply the common syntax expectations for C# when trying to convert an example of Gremlin from a different language. Another common conversion issues lies in having to explicitly define generics, which can make canonical Gremlin appear much more complex in C# where type erasure is not a feature of the language. For example, the following example in Groovy: [source,groovy]
g.V().repeat(__.out()).times(2).values('name')
must be written as: [source,csharp]
g.V().Repeat(__.Out()).Times(2).Values<string>("name");
Gremlin allows for `Map` instances to include `null` keys, but `null` keys in C# `Dictionary` instances are not allowed. It is therefore necessary to rewrite a traversal such as: [source,csharp]
g.V().GroupCount<object>().By("age")
where "age" is not a valid key for all vertices in a way that will remove the need for a `null` to be returned. Finally, the enum construct for `Cardinality` cannot have functions attached to it the way it can be done in Java, therefore cardinality functions that take a value like `list()`, `set()`, and `single()` are referenced from a `CardinalityValue` class rather than `Cardinality` itself. [source,csharp]
g.V().Has("age").GroupCount<object>().By("age") g.V().HasLabel("person").GroupCount<object>().By("age")
Either of the above two options accomplishes the desired goal as both prevent `groupCount()` from having to process the possibility of `null`. anchor:gremlin-net-limitations[] [[gremlin-dotnet-limitations]] === Limitations * The `subgraph()`-step is not supported by any variant that is not running on the Java Virtual Machine as there is no `Graph` instance to deserialize a result into on the client-side. A workaround is to replace the step with `aggregate(local)` and then convert those results to something the client can use locally. anchor:gremlin-dotnet-template[] anchor:dotnet-application-examples[] anchor:gremlin-net-examples[] [[gremlin-dotnet-startup]] === Getting Started This link:https://docs.microsoft.com/dotnet/core/tools/custom-templates[dotnet template] helps getting started with <<gremlin-dotnet,Gremlin.Net>>. It creates a new C# console project that shows how to connect to a <<gremlin-server,Gremlin Server>> with Gremlin.Net. You can install the template with the dotnet CLI tool: [source,shell] dotnet new -i Gremlin.Net.Template After the template is installed, a new project based on this template can be installed: [source,shell] dotnet new gremlin Specify the output directory for the new project which will then also be used as the name of the created project: [source,shell] dotnet new gremlin -o MyFirstGremlinProject [[gremlin-dotnet-examples]] === Application Examples The TinkerPop source code contains some sample applications that demonstrate the basics of Gremlin-Dotnet. They can be found in GitHub link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/glv-examples/gremlin-dotnet/[here] and are designed to connect to a running <<gremlin-server,Gremlin Server>> configured with the `conf/gremlin-server.yaml` and `conf/gremlin-server-modern.yaml` files as included with the standard release packaging. This guide assumes Gremlin Server will be executed using Docker. Alternatively, Gremlin Server can run locally (see the <<gremlin-server,Gremlin Server>> documentation for this option). To start Gremlin Server using Docker, first download an image of Gremlin Server from Docker Hub: [source,shell]
docker pull tinkerpop/gremlin-server
Clean server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server
Modern toy graph server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server conf/gremlin-server-modern.yaml
The remote connection and basic Gremlin examples can be run on a clean server, while traversal examples should be run on a server with the Modern graph preloaded. ==== Prerequisites - Compatible .NET SDK installed (see <<development-environment,Development Environment>> for supported versions) Navigate to the examples directory: [source,shell]
cd glv-examples/gremlin-dotnet
Build all projects: [source,shell]
dotnet build Examples.sln
Run specific examples: [source,shell]
dotnet run --project BasicGremlin dotnet run --project Connections dotnet run --project ModernTraversals
[[gremlin-python]] == Gremlin-Python image:gremlin-python-drawing.png[width=130,float=right] Apache TinkerPop's Gremlin-Python implements Gremlin within the link:https://www.python.org/[Python] language and can be used on any Python virtual machine including the popular link:https://en.wikipedia.org/wiki/CPython[CPython] machine. Python's syntax has the same constructs as Java including "dot notation" for function chaining (`a.b.c`), round bracket function arguments (`a(b,c)`), and support for global namespaces (`a(b())` vs `a(__.b())`). As such, anyone familiar with Gremlin-Java will immediately be able to work with Gremlin-Python. Moreover, there are a few added constructs to Gremlin-Python that make traversals a bit more succinct. To install Gremlin-Python, use Python's link:https://en.wikipedia.org/wiki/Pip_(package_manager)[pip] package manager. [source,bash]
pip install gremlinpython pip install gremlinpython[kerberos] # Optional, not available on Microsoft Windows
[[gremlin-python-connecting]] === Connecting The pattern for connecting is described in <<connecting-gremlin,Connecting Gremlin>> and it basically distills down to creating a `GraphTraversalSource`. A `GraphTraversalSource` is created from the anonymous `traversal()` method where the "g" provided to the `DriverRemoteConnection` corresponds to the name of a `GraphTraversalSource` on the remote end. [source,python]
g = traversal().with_(DriverRemoteConnection('ws://localhost:8182/gremlin','g'))
If you need to send additional headers in the websockets connection, you can pass an optional `headers` parameter to the `DriverRemoteConnection` constructor. [source,python]
g = traversal().with_(DriverRemoteConnection( 'ws://localhost:8182/gremlin', 'g', headers={'Header':'Value'}))
Gremlin-Python supports plain text and Kerberos SASL authentication, you can set it on the connection options. [source,python]
# Plain text authentication g = traversal().with_(DriverRemoteConnection( 'ws://localhost:8182/gremlin', 'g', username='stephen', password='password'))
# Kerberos authentication g = traversal().with_(DriverRemoteConnection( 'ws://localhost:8182/gremlin', 'g', kerberized_service='gremlin@hostname.your.org'))
The value specified for the kerberized_service should correspond to the first part of the principal name configured for the gremlin service, but with the slash replaced by an _at_ sign. The Gremlin-Python client reads the kerberos configurations from your system. It finds the KDC's hostname and port from the krb5.conf file at the https://web.mit.edu/kerberos/krb5-devel/doc/mitK5defaults.html[default location] or as indicated in the KRB5_CONFIG environment variable. It finds credentials from the credential cache or a keytab file at the https://web.mit.edu/kerberos/krb5-devel/doc/mitK5defaults.html[default locations] or as indicated in the KRB5CCNAME or KRB5_KTNAME environment variables. If you authenticate to a remote <<connecting-gremlin-server,Gremlin Server>> or <<connecting-rgp,Remote Gremlin Provider>>, this server normally has SSL activated and the websockets url will start with 'wss://'. If Gremlin-Server uses a self-signed certificate for SSL, Gremlin-Python needs access to a local copy of the CA certificate file (in openssl .pem format), to be specified in the SSL_CERT_FILE environment variable. NOTE: If connecting from an inherently single-threaded Python process where blocking while waiting for Gremlin traversals to complete is acceptable, it might be helpful to set `pool_size` and `max_workers` parameters to 1. See the <<python-configuration,Configuration>> section just below. Examples where this could apply are serverless cloud functions or WSGI worker processes. Some connection options can also be set on individual requests made through the using `with()` step on the `TraversalSource`. For instance to set request timeout to 500 milliseconds: [source,python]
vertices = g.with_('evaluationTimeout', 500).V().out('knows').to_list()
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). anchor:python-imports[] [[gremlin-python-imports]] === Common Imports There are a number of classes, functions and tokens that are typically used with Gremlin. The following imports provide most of the typical functionality required to use Gremlin: [source,python]
from gremlin_python import statics from gremlin_python.process.anonymous_traversal import traversal from gremlin_python.process.graph_traversal import __ from gremlin_python.process.strategies import * from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection from gremlin_python.process.traversal import T from gremlin_python.process.traversal import Order from gremlin_python.process.traversal import Cardinality from gremlin_python.process.traversal import CardinalityValue from gremlin_python.process.traversal import Column from gremlin_python.process.traversal import Direction from gremlin_python.process.traversal import Operator from gremlin_python.process.traversal import P from gremlin_python.process.traversal import TextP from gremlin_python.process.traversal import Pop from gremlin_python.process.traversal import Scope from gremlin_python.process.traversal import Barrier from gremlin_python.process.traversal import Bindings from gremlin_python.process.traversal import WithOptions
These can be used analogously to how they are used in Gremlin-Java. [source,python]
>>> g.V().has_label('person').has('age',P.gt(30)).order().by('age',Order.desc).to_list()
Moreover, by importing the `statics` of Gremlin-Python, the class prefixes can be omitted. [source,python]
>>> statics.load_statics(globals())
With statics loaded its possible to represent the above traversal as below. [source,python]
>>> g.V().has_label('person').has('age',gt(30)).order().by('age',desc).to_list()
Statics includes all the `+__+`-methods and thus, anonymous traversals like `+__.out()+` can be expressed as below. That is, without the `+__+`-prefix. [source,python]
>>> g.V().repeat(out()).times(2).name.fold().to_list() [['ripple', 'lop']]
There may be situations where certain graphs may want a more exact data type than what Python will allow as a language. To support these situations `gremlin-python` has a few special type classes that can be imported from `statics`. They include: [source,python]
from gremlin_python.statics import long # Java long from gremlin_python.statics import timestamp # Java timestamp from gremlin_python.statics import SingleByte # Java byte type from gremlin_python.statics import SingleChar # Java char type from gremlin_python.statics import GremlinType # Java Class
anchor:python-configuration[] [[gremlin-python-configuration]] === Configuration The following table describes the various configuration options for the Gremlin-Python Driver. They can be passed to the `Client` or `DriverRemoteConnection` instance as keyword arguments: [width="100%",cols="3,10,^2",options="header"] |========================================================= |Key |Description |Default |enable_compression |Enables sending a user agent to the server during connection requests. |False |enable_user_agent_on_connect |Enables sending a user agent to the server during connection requests. More details can be found in provider docs link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/#_graph_driver_provider_requirements[here].|True |headers |Additional headers that will be added to each request message. |`None` |kerberized_service |the first part of the principal name configured for the gremlin service|""" |max_workers |Maximum number of worker threads. |Number of CPUs * 5 |message_serializer |The message serializer implementation.|`gremlin_python.driver.serializer.GraphBinarySerializersV1` |password |The password to submit on requests that require authentication. |"" |pool_size |The number of connections used by the pool. |4 |protocol_factory |A callable that returns an instance of `AbstractBaseProtocol`. |`gremlin_python.driver.protocol.GremlinServerWSProtocol` |session | A unique string-based identifier (typically a UUID) to enable a <<sessions,session-based connection>>. This is not a valid configuration for `DriverRemoteConnection`. |None |transport_factory |A callable that returns an instance of `AbstractBaseTransport`. |`gremlin_python.driver.aiohttp.transport.AiohttpTransport` |username |The username to submit on requests that require authentication. |"" |========================================================= Note that the `transport_factory` can allow for additional configuration of the `AiohttpTransport`, which allows pass through of the named parameters available in link:https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession.ws_connect[AIOHTTP's ws_connect], and the ability to call the api from an event loop: [source,python]
import ssl … g = traversal().with_( DriverRemoteConnection('ws://localhost:8182/gremlin','g', transport_factory=lambda: AiohttpTransport(read_timeout=60, write_timeout=20, heartbeat=10, call_from_event_loop=True, max_content_length=100*1024*1024, ssl_options=ssl.create_default_context(Purpose.CLIENT_AUTH))))
Note that the `heartbeat` enables keep-alive functionality within aiohttp and it is not enabled by default. It is important that the heartbeat interval is not too short, as the wait for the server response to the heartbeat request is half the amount of this value. Therefore, if the heartbeat is ten seconds then the wait for the response is just five seconds. If the response is not received in that time period then the connection will be closed and any ongoing requests on that connection will fail to retrieve results. Therefore, if the heartbeat is set to one second, it only provides a half-second to get the response which raises the possibility considerably that the connection will be inadvertently closed. Compression configuration options are described in the link:https://docs.python.org/3.6/library/zlib.html#zlib.compressobj[zlib documentation]. By default, compression settings are configured as shown in the above example. [[gremlin-python-strategies]] === Traversal Strategies In order to add and remove <<traversalstrategy,traversal strategies>> from a traversal source, Gremlin-Python has a `TraversalStrategy` class along with a collection of subclasses that mirror the standard Gremlin-Java strategies. [source,python]
>>> g = g.with_strategies(SubgraphStrategy(vertices=has_label('person'),edges=has('weight',gt(0.5)))) >>> g.V().name.to_list()
>>> g.V().out_e().element_map().to_list()
>>> g = g.without_strategies(SubgraphStrategy) >>> g.V().name.to_list()
>>> g.V().out_e().element_map().to_list()
>>> g = g.with_computer(workers=2,vertices=has('name','marko')) >>> g.V().name.to_list()
>>> g.V().out_e().value_map().with_(WithOptions.tokens).to_list()
NOTE: Many of the `TraversalStrategy` classes in Gremlin-Python are proxies to the respective strategy on Apache TinkerPop's JVM-based Gremlin traversal machine. As such, their `apply(Traversal)` method does nothing. However, the strategy is encoded in the Gremlin-Python bytecode and transmitted to the Gremlin traversal machine for re-construction machine-side. [[gremlin-python-transactions]] === Transactions To get a full understanding of this section, it would be good to start by reading the <<transactions,Transactions>> section of this documentation, which discusses transactions in the general context of TinkerPop itself. This section builds on that content by demonstrating the transactional syntax for Python. [source,python]
g = traversal().with_(DriverRemoteConnection('ws://localhost:8182/gremlin'))
# Create a Transaction. tx = g.tx()
# Spawn a new GraphTraversalSource, binding all traversals established from it to tx. gtx = tx.begin()
try: # Execute a traversal within the transaction. gtx.add_v("person").property("name", "Lyndon").iterate(),
# Commit the transaction. The transaction can no longer be used and cannot be re-used.
# A new transaction can be spawned through g.tx().
# The context of g remains sessionless throughout the process.
tx.commit()
except Exception as e:
# Rollback the transaction if an error occurs.
tx.rollback()
[[gremlin-python-lambda]] === The Lambda Solution Supporting link:https://en.wikipedia.org/wiki/Anonymous_function[anonymous functions] across languages is difficult as most languages do not support lambda introspection and thus, code analysis. In Gremlin-Python, a Gremlin lambda should be represented as a zero-arg callable that returns a string representation of the lambda expected for use in the traversal. The lambda should be written as a `Gremlin-Groovy` string. When the lambda is represented in `Bytecode` its language is encoded such that the remote connection host can infer which translator and ultimate execution engine to use. [source,python]
>>> g.V().out().map(lambda: "it.get().value('name').length()").sum().to_list()
TIP: When running into situations where Groovy cannot properly discern a method signature based on the `Lambda`
instance created, it will help to fully define the closure in the lambda expression - so rather than
`lambda: ('it.get().value('name')','gremlin-groovy')`, prefer `lambda: ('x -> x.get().value('name'),'gremlin-groovy')`.
Finally, Gremlin `Bytecode` that includes lambdas requires that the traversal be processed by the
`ScriptEngine`. To avoid continued recompilation costs, it supports the encoding of bindings, which allow a remote
engine to to cache traversals that will be reused over and over again save that some parameterization may change. Thus,
instead of translating, compiling, and then executing each submitted bytecode, it is possible to simply execute.
[source,python]
>>> g.V(Bindings.of('x',1)).out('created').map(lambda: "it.get().value('name').length()").sum_().to_list()
>>> g.V(Bindings.of('x',4)).out('created').map(lambda: "it.get().value('name').length()").sum_().to_list()
WARNING: As explained throughout the documentation, when possible <<a-note-on-lambdas,avoid>> lambdas. [[gremlin-python-scripts]] === Submitting Scripts The `Client` class implementation/interface is based on the Java Driver, with some restrictions. Most notably, Gremlin-Python does not yet implement the `Cluster` class. Instead, `Client` is instantiated directly. Usage is as follows: [source,python]
from gremlin_python.driver import client <1> client = client.Client('ws://localhost:8182/gremlin', 'g') <2>
<1> Import the Gremlin-Python `client` module. <2> Opens a reference to `localhost` - note that there are various configuration options that can be passed to the `Client` object upon instantiation as keyword arguments. Once a `Client` instance is ready, it is possible to issue some Gremlin: [source,python]
result_set = client.submit('[1,2,3,4]') <1> future_results = result_set.all() <2> results = future_results.result() <3> assert results == [1, 2, 3, 4] <4>
future_result_set = client.submit_async('[1,2,3,4]') <5> result_set = future_result_set.result() <6> result = result_set.one() <7> assert results == [1, 2, 3, 4] <8> assert result_set.done.done() <9>
client.close() <10>
<1> Submit a script that simply returns a `List` of integers. This method blocks until the request is written to the server and a `ResultSet` is constructed. <2> Even though the `ResultSet` is constructed, it does not mean that the server has sent back the results (or even evaluated the script potentially). The `ResultSet` is just a holder that is awaiting the results from the server. The `all` method returns a `concurrent.futures.Future` that resolves to a list when it is complete. <3> Block until the the script is evaluated and results are sent back by the server. <4> Verify the result. <5> Submit the same script to the server but don't block. <6> Wait until request is written to the server and `ResultSet` is constructed. <7> Read a single result off the result stream. <8> Again, verify the result. <9> Verify that the all results have been read and stream is closed. <10> Close client and underlying pool connections. ==== Per Request Settings The `client.submit()` functions accept a `request_options` which expects a dictionary. The `request_options` provide a way to include options that are specific to the request made with the call to `submit()`. A good use-case for this feature is to set a per-request override to the `evaluationTimeout` so that it only applies to the current request. [source,python]
result_set = client.submit('g.V().repeat(both()).times(100)', request_options={'evaluationTimeout': 5000})
The following options are allowed on a per-request basis in this fashion: `batchSize`, `requestId`, `userAgent`, `materializeProperties` and `evaluationTimeout` (formerly `scriptEvaluationTimeout` which is also supported but now deprecated). IMPORTANT: The preferred method for setting a per-request timeout for scripts is demonstrated above, but those familiar with bytecode may try `g.with(EVALUATION_TIMEOUT, 500)` within a script. Scripts with multiple traversals and multiple timeouts will be interpreted as a sum of all timeouts identified in the script for that request. [source,java]
RequestOptions options = RequestOptions.build().timeout(500).create();
List<Result> result = client.submit("g.with(EVALUATION_TIMEOUT, 500).addV().iterate();"
"g.addV().iterate();
"g.with(EVALUATION_TIMEOUT, 500).addV();", options).all().get();
In the above example, `RequestOptions` defines a timeout of 500 milliseconds, but the script has three traversals with two internal settings for the timeout using `with()`. The request timeout used by the server will therefore be 1000 milliseconds (overriding the 500 which itself was an override for whatever configuration was on the server). [[gremlin-python-dsl]] === Domain Specific Languages Writing a Gremlin <<dsl,Domain Specific Language>> (DSL) in Python simply requires direct extension of several classes: * `GraphTraversal` - which exposes the various steps used in traversal writing * `__` - which spawns anonymous traversals from steps * `GraphTraversalSource` - which spawns `GraphTraversal` instances The Social DSL based on the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/images/tinkerpop-modern.png["modern" toy graph] might look like this: [source,python]
class SocialTraversal(GraphTraversal):
def knows(self, person_name):
return self.out('knows').has_label('person').has('name', person_name)
def youngest_friends_age(self):
return self.out('knows').has_label('person').values('age').min()
def created_at_least(self, number):
return self.out_e('created').count().is_(P.gte(number))
class __(AnonymousTraversal):
graph_traversal = SocialTraversal
@classmethod
def knows(cls, *args):
return cls.graph_traversal(None, None, Bytecode()).knows(*args)
@classmethod
def youngest_friends_age(cls, *args):
return cls.graph_traversal(None, None, Bytecode()).youngest_friends_age(*args)
@classmethod
def created_at_least(cls, *args):
return cls.graph_traversal(None, None, Bytecode()).created_at_least(*args)
class SocialTraversalSource(GraphTraversalSource):
def __init__(self, *args, **kwargs):
super(SocialTraversalSource, self).__init__(*args, **kwargs)
self.graph_traversal = SocialTraversal
def persons(self, *args):
traversal = self.get_graph_traversal()
traversal.bytecode.add_step('V')
traversal.bytecode.add_step('hasLabel', 'person')
if len(args) > 0:
traversal.bytecode.add_step('has', 'name', P.within(args))
return traversal
NOTE: The `AnonymousTraversal` class above is just an alias for `+__+` as in `+from gremlin_python.process.graph_traversal import __ as AnonymousTraversal+` Using the DSL is straightforward and just requires that the graph instance know the `SocialTraversalSource` should be used: [source,python]
social = traversal(SocialTraversalSource).with_(DriverRemoteConnection('ws://localhost:8182/gremlin','g')) social.persons('marko').knows('josh') social.persons('marko').youngest_friends_age() social.persons().filter(__.created_at_least(2)).count()
[[gremlin-python-sugar]] === Syntactic Sugar Python supports meta-programming and operator overloading. There are three uses of these techniques in Gremlin-Python that makes traversals a bit more concise. [source,python]
>>> g.V().both()[1:3].to_list()
>>> g.V().both()[1].to_list()
>>> g.V().both().name.to_list()
[[gremlin-python-differences]] === Differences In situations where Python reserved words and global functions overlap with standard Gremlin steps and tokens, those bits of conflicting Gremlin get an underscore appended as a suffix: *Steps* - <<all-step,all_()>>, <<and-step,and_()>>, <<any-step,any_()>>, <<as-step,as_()>>, <<filter-step,filter_()>>, <<from-step,from_()>>, <<id-step,id_()>>, <<is-step,is_()>>, <<in-step,in_()>>, <<max-step,max_()>>, <<min-step,min_()>>, <<not-step,not_()>>, <<or-step,or_()>>, <<range-step,range_()>>, <<sum-step,sum_()>>, <<with-step,with_()>> *Tokens* - <<a-note-on-scopes,Scope.global_>>, `Direction.from_`, `Operator.sum_` In addition, the enum construct for `Cardinality` cannot have functions attached to it the way it can be done in Java, therefore cardinality functions that take a value like `list()`, `set()`, and `single()` are referenced from a `CardinalityValue` class rather than `Cardinality` itself. [[gremlin-python-limitations]] === Limitations * Traversals that return a `Set` *might* be coerced to a `List` in Python. In the case of Python, number equality is different from JVM languages which produces different `Set` results when those types are in use. When this case is detected during deserialization, the `Set` is coerced to a `List` so that traversals return consistent results within a collection across different languages. If a `Set` is needed then convert `List` results to `Set` manually. * Gremlin is capable of returning `Dictionary` results that use non-hashable keys (e.g. Dictionary as a key) and Python does not support that at a language level. Using GraphSON 3.0 or GraphBinary (after 3.5.0) makes it possible to return such results. In all other cases, Gremlin that returns such results will need to be re-written to avoid that sort of key. * The `subgraph()`-step is not supported by any variant that is not running on the Java Virtual Machine as there is no `Graph` instance to deserialize a result into on the client-side. A workaround is to replace the step with `aggregate(local)` and then convert those results to something the client can use locally. * Use of the aiohttp library in the default transport requires the use of asyncio's event loop to run the async functions. This can be an issue in situations where the application calling Gremlin-Python is already using an event loop. Certain types of event loops can be patched using nest-asyncio which allows Gremlin-Python to proceed without an error like "Cannot run the event loop while another loop is running". This is the preferred approach to avoiding the issue and can be enabled by passing `call_from_event_loop=True` to the `AiohttpTransport` class. + However, in situations where the loop cannot be patched (e.g. uvloop), then the current suggested workaround is to run Gremlin-Python in a separate thread. This is not ideal for asynchronous web servers as the number of concurrent connections will be limited by the number of threads the system can handle. The following snippet shows how Gremlin-Python can be called from asynchronous code using a thread. + [source,python]
def print_vertices(): g = traversal().with_(DriverRemoteConnection("ws://localhost:8182/gremlin")) # Do your traversal.
async def run_in_thread(): running_loop = asyncio.get_running_loop()
with ThreadPoolExecutor() as pool:
await running_loop.run_in_executor(pool, print_vertices)
[[gremlin-python-examples]] === Application Examples The TinkerPop source code contains some sample applications that demonstrate the basics of Gremlin-Python. They can be found in GitHub link:https://github.com/apache/tinkerpop/tree/3.8.0-SNAPSHOT/glv-examples/gremlin-python/[here] and are designed to connect to a running <<gremlin-server,Gremlin Server>> configured with the `conf/gremlin-server.yaml` and `conf/gremlin-server-modern.yaml` files as included with the standard release packaging. This guide assumes Gremlin Server will be executed using Docker. Alternatively, Gremlin Server can run locally (see the <<gremlin-server,Gremlin Server>> documentation for this option). To start Gremlin Server using Docker, first download an image of Gremlin Server from Docker Hub: [source,shell]
docker pull tinkerpop/gremlin-server
Clean server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server
Modern toy graph server: [source,shell]
docker run -d -p 8182:8182 tinkerpop/gremlin-server conf/gremlin-server-modern.yaml
The remote connection and basic Gremlin examples can be run on a clean server, while traversal examples should be run on a server with the Modern graph preloaded. ==== Prerequisites - Compatible Python installed (see <<development-environment,Development Environment>> for supported versions) - pip installed NOTE: On some systems, you may need to use `python3` and `pip3` instead of `python` and `pip`. Navigate to the examples directory: [source,shell]
cd glv-examples/gremlin-python
Install the requirements: [source,shell]
pip install -r requirements.txt
Run the examples: [source,shell]
python connections.py python basic_gremlin.py python modern_traversals.py
// LAST LINE //// //// [[implementations]] = Implementations image::gremlin-racecar.png[width=325] TinkerPop offers several reference implementations of its interfaces that are not only meant for production usage, but also represent models by which different graph providers can build their systems. More specific documentation on how to build systems at this level of the API can be found in the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/dev/provider/[Provider Documentation]. The following sections describe the various reference implementations and their usage. //// //// [[tinkergraph-gremlin]] == TinkerGraph-Gremlin [source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>tinkergraph-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
<!-- For a minimal version without sample datasets where TinkerFactory will not load the Air Routes or Grateful Dead dataset. -→ <dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>tinkergraph-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> <classifier>min</classifier> </dependency>
image:tinkerpop-character.png[width=100,float=left] TinkerGraph is a single machine, in-memory (with optional persistence), graph engine that provides both OLTP and OLAP functionality. It is non-transactional by default but does have a lightweight transactional form that can be instantiated offering simple `ThreadLocal` transactions supporting `read committed` transaction isolation. TinkerGraph is deployed with TinkerPop and serves as the reference implementation for other providers to study in order to understand the semantics of the various methods of the TinkerPop API. Its status as a reference implementation does not however imply that it is not suitable for production. TinkerGraph has many practical use cases in production applications and their development. Some examples of TinkerGraph use cases include: * Ad-hoc analysis of large immutable graphs that fit in memory. * Extract subgraphs, from larger graphs that don't fit in memory, into TinkerGraph for further analysis or other purposes. * Use TinkerGraph as a sandbox to develop and debug complex traversals by simulating data from a larger graph inside a TinkerGraph. * Configure it to match the semantics of a production graph database for unit testing purpose to simplify development setup and automated builds. Constructing a simple graph using TinkerGraph in Java is presented below: [source,java]
Graph graph = TinkerGraph.open(); GraphTraversalSource g = traversal().with(graph); Vertex marko = g.addV("person").property("name","marko").property("age",29).next(); Vertex lop = g.addV("software").property("name","lop").property("lang","java").next(); g.addE("created").from(marko).to(lop).property("weight",0.6d).iterate();
The above Gremlin creates two vertices named "marko" and "lop" and connects them via a created-edge with a weight=0.6 property. The addition of these two vertices and the edge between them could also be done in a single Gremlin statement as follows: [source,java]
g.addV("person").property("name","marko").property("age",29).as("m"). addV("software").property("name","lop").property("lang","java").as("l"). addE("created").from("m").to("l").property("weight",0.6d).iterate();
IMPORTANT: Pay attention to the fact that traversals end with `next()` or `iterate()`. These methods advance the
objects in the traversal stream and without those methods, the traversal does nothing. Review the
link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/tutorials/the-gremlin-console/#result-iteration[Result Iteration Section]
of The Gremlin Console tutorial for more information.
Next, the graph can be queried as such.
[source,java]
g.V().has("name","marko").out("created").values("name")
The `g.V().has("name","marko")` part of the query can be executed in two ways.
* A linear scan of all vertices filtering out those vertices that don't have the name "marko"
* A `O(log(|V|))` index lookup for all vertices with the name "marko"
Given the initial graph construction in the first code block, no index was defined and thus, a linear scan is executed.
However, if the graph was constructed as such, then an index lookup would be used.
[source,java]
Graph g = TinkerGraph.open();
g.createIndex("name",Vertex.class)
The execution times for a vertex lookup by property is provided below for both no-index and indexed version of
TinkerGraph over the Grateful Dead graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761594991-1" type="radio" name="radio-set-1761594991-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761594991-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594991-2" type="radio" name="radio-set-1761594991-1" class="tab-selector-2" />
<label for="tab-1761594991-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerGraph.open() =⇒tinkergraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> g.io('data/grateful-dead.xml').read().iterate() gremlin> clock(1000) {g.V().has('name','Garcia').iterate()} //// <1> =⇒0.091417705 gremlin> graph = TinkerGraph.open() =⇒tinkergraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> graph.createIndex('name',Vertex.class) =⇒null gremlin> g.io('data/grateful-dead.xml').read().iterate() gremlin> clock(1000){g.V().has('name','Garcia').iterate()} //// <2> =⇒0.016284796999999997
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerGraph.open() g = traversal().with(graph) g.io('data/grateful-dead.xml').read().iterate() clock(1000) {g.V().has('name','Garcia').iterate()} //// <1> graph = TinkerGraph.open() g = traversal().with(graph) graph.createIndex('name',Vertex.class) g.io('data/grateful-dead.xml').read().iterate() clock(1000){g.V().has('name','Garcia').iterate()} <2>
++++
</div>
</div>
</section>
++++
<1> Determine the average runtime of 1000 vertex lookups when no `name`-index is defined.
<2> Determine the average runtime of 1000 vertex lookups when a `name`-index is defined.
IMPORTANT: Each graph system will have different mechanism by which indices and schemas are defined. TinkerPop
does not require any conformance in this area. In TinkerGraph, the only definitions are around indices. With other
graph systems, property value types, indices, edge labels, etc. may be required to be defined _a priori_ to adding
data to the graph.
NOTE: TinkerGraph is distributed with Gremlin Server and is therefore automatically available to it for configuration.
=== Data Types
TinkerGraph can store any Java `Object` for a property value. It is therefore important to take note of the types of
the values that are being used and it is often best to be explicit in terms of exactly what type is being used,
especially in the case of numbers.
++++
<section class="tabs tabs-2">
<input id="tab-1761594991-3" type="radio" name="radio-set-1761594991-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761594991-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594991-4" type="radio" name="radio-set-1761594991-3" class="tab-selector-2" />
<label for="tab-1761594991-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerGraph.open() =⇒tinkergraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> g.addV().property('vp2',0.65780294) =⇒v[0] gremlin> g.addV().property('vp2',0.65780294f) =⇒v[2] gremlin> g.addV().property('vp2',0.65780294d) =⇒v[4] gremlin> g.V().has('vp2',0.65780294) //// <1> =⇒v[0] =⇒v[2] =⇒v[4] gremlin> g.V().has('vp2',0.65780294f) //// <2> =⇒v[0] =⇒v[2] gremlin> g.V().has('vp2',0.65780294d) //// <3> =⇒v[0] =⇒v[4]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerGraph.open() g = traversal().with(graph) g.addV().property('vp2',0.65780294) g.addV().property('vp2',0.65780294f) g.addV().property('vp2',0.65780294d) g.V().has('vp2',0.65780294) //// <1> g.V().has('vp2',0.65780294f) //// <2> g.V().has('vp2',0.65780294d) <3>
++++
</div>
</div>
</section>
++++
<1> In Gremlin Console, `0.65780294` actually evaluates to a `BigDecimal`, which won't match the specifically typed
`float` property value.
<2> The explicit `float` will only match the `float` property value.
<3> The explicit `double` will only match the `double` and `BigDecimal` values.
Unlike other graphs, the above demonstration shows that TinkerGraph does not do any form of type coercion (except for
type coercion related to element identifiers as described in the <<next section,tinkergraph-configuration>>).
[[tinkergraph-configuration]]
=== Configuration
TinkerGraph has several settings that can be provided on creation via `Configuration` object:
[width="100%",cols="2,10",options="header"]
|=========================================================
|Property |Description
|gremlin.graph |`org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerGraph`
|gremlin.tinkergraph.vertexIdManager |The `IdManager` implementation to use for vertices.
|gremlin.tinkergraph.edgeIdManager |The `IdManager` implementation to use for edges.
|gremlin.tinkergraph.vertexPropertyIdManager |The `IdManager` implementation to use for vertex properties.
|gremlin.tinkergraph.defaultVertexPropertyCardinality |The default `VertexProperty.Cardinality` to use when `Vertex.property(k,v)` is called.
|gremlin.tinkergraph.allowNullPropertyValues |A boolean value that determines whether or not `null` property values are allowed and defaults to `false`.
|gremlin.tinkergraph.graphLocation |The path and file name for where TinkerGraph should persist the graph data. If a
value is specified here, the `gremlin.tinkergraph.graphFormat` should also be specified. If this value is not
included (default), then the graph will stay in-memory and not be loaded/persisted to disk.
|gremlin.tinkergraph.graphFormat |The format to use to serialize the graph which may be one of the following:
`graphml`, `graphson`, `gryo`, or a fully qualified class name that implements Io.Builder interface (which allows for
external third party graph reader/writer formats to be used for persistence).
If a value is specified here, then the `gremlin.tinkergraph.graphLocation` should
also be specified. If this value is not included (default), then the graph will stay in-memory and not be
loaded/persisted to disk.
|=========================================================
NOTE: To use <<tinkergraph-gremlin-tx, transactions>>, configure `gremlin.graph` as
`org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerTransactionGraph`.
The `IdManager` settings above refer to how TinkerGraph will control identifiers for vertices, edges and vertex
properties. There are several options for each of these settings: `ANY`, `LONG`, `INTEGER`, `UUID`, `STRING` or the
fully qualified class name of an `IdManager` implementation on the classpath. When not specified, the default values
for all settings is `ANY`, meaning that the graph will work with any object on the JVM as the identifier and will
generate new identifiers from `Long` when the identifier is not user supplied. TinkerGraph will also expect the
user to understand the types used for identifiers when querying, meaning that `g.V(1)` and `g.V(1L)` could return
two different vertices. `LONG`, `INTEGER` and `UUID` settings will try to coerce identifier values to the expected
type as well as generate new identifiers with that specified type.
TIP: Setting the `IdManager` to `ANY` also allows `String` type ID values to be used.
If the TinkerGraph is configured for persistence with `gremlin.tinkergraph.graphLocation` and
`gremlin.tinkergraph.graphFormat`, then the graph will be written to the specified location with the specified
format when `Graph.close()` is called. In addition, if these settings are present, TinkerGraph will attempt to
load the graph from the specified location.
IMPORTANT: If choosing `graphson` as the `gremlin.tinkergraph.graphFormat`, be sure to also establish the various
`IdManager` settings as well to ensure that identifiers are properly coerced to the appropriate types as GraphSON
can lose the identifier's type during serialization (i.e. it will assume `Integer` when the default for TinkerGraph
is `Long`, which could lead to load errors that result in a message like, "Vertex with id already exists").
It is important to consider the data being imported to TinkerGraph with respect to `defaultVertexPropertyCardinality`
setting. For example, if a `.gryo` file is known to contain multi-property data, be sure to set the default
cardinality to `list` or else the data will import as `single`. Consider the following:
++++
<section class="tabs tabs-2">
<input id="tab-1761594991-5" type="radio" name="radio-set-1761594991-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761594991-5" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594991-6" type="radio" name="radio-set-1761594991-5" class="tab-selector-2" />
<label for="tab-1761594991-6" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerGraph.open() =⇒tinkergraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> g.io("data/tinkerpop-crew.kryo").read().iterate() [WARN] o.a.t.g.s.u.Attachable$Method - location has SINGLE cardinality but with more than one value: [vp[location→san diego], vp[location→santa cruz], vp[location→brussels], vp[location→santa fe]]. Only last value will be retained. [WARN] o.a.t.g.s.u.Attachable$Method - location has SINGLE cardinality but with more than one value: [vp[location→centreville], vp[location→dulles], vp[location→purcellville]]. Only last value will be retained. [WARN] o.a.t.g.s.u.Attachable$Method - location has SINGLE cardinality but with more than one value: [vp[location→bremen], vp[location→baltimore], vp[location→oakland], vp[location→seattle]]. Only last value will be retained. [WARN] o.a.t.g.s.u.Attachable$Method - location has SINGLE cardinality but with more than one value: [vp[location→spremberg], vp[location→kaiserslautern], vp[location→aachen]]. Only last value will be retained. gremlin> g.V().properties() =⇒vp[name→marko] =⇒vp[location→santa fe] =⇒vp[name→stephen] =⇒vp[location→purcellville] =⇒vp[name→matthias] =⇒vp[location→seattle] =⇒vp[name→daniel] =⇒vp[location→aachen] =⇒vp[name→gremlin] =⇒vp[name→tinkergraph] gremlin> conf = new BaseConfiguration() =⇒org.apache.commons.configuration2.BaseConfiguration@706dee4 gremlin> conf.setProperty("gremlin.tinkergraph.defaultVertexPropertyCardinality","list") =⇒null gremlin> graph = TinkerGraph.open(conf) =⇒tinkergraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[tinkergraph[vertices:0 edges:0], standard] gremlin> g.io("data/tinkerpop-crew.kryo").read().iterate() gremlin> g.V().properties() =⇒vp[name→marko] =⇒vp[location→san diego] =⇒vp[location→santa cruz] =⇒vp[location→brussels] =⇒vp[location→santa fe] =⇒vp[name→stephen] =⇒vp[location→centreville] =⇒vp[location→dulles] =⇒vp[location→purcellville] =⇒vp[name→matthias] =⇒vp[location→bremen] =⇒vp[location→baltimore] =⇒vp[location→oakland] =⇒vp[location→seattle] =⇒vp[name→daniel] =⇒vp[location→spremberg] =⇒vp[location→kaiserslautern] =⇒vp[location→aachen] =⇒vp[name→gremlin] =⇒vp[name→tinkergraph]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerGraph.open() g = traversal().with(graph) g.io("data/tinkerpop-crew.kryo").read().iterate() g.V().properties() conf = new BaseConfiguration() conf.setProperty("gremlin.tinkergraph.defaultVertexPropertyCardinality","list") graph = TinkerGraph.open(conf) g = traversal().with(graph) g.io("data/tinkerpop-crew.kryo").read().iterate() g.V().properties()
++++
</div>
</div>
</section>
++++
[[tinkergraph-gremlin-tx]]
=== Transactions
`TinkerGraph` includes optional transaction support and thread-safety through the `TinkerTransactionGraph` class.
The default configuration of TinkerGraph remains non-transactional.
NOTE: This feature was first made available in TinkerPop 3.7.0.
==== Transaction Semantics
`TinkerTransactionGraph` only has support for `ThreadLocal` transactions, so embedded graph transactions may not be fully
supported. You can think of the transaction as belonging to a thread, any traversals executed within the same thread
will share the same transaction even if you attempt to start a new transaction.
`TinkerTransactionGraph` provides the `read committed` transaction isolation level. This means that it will always try to
guard against dirty reads but will not prevent non-repeatable reads or phantom reads. While you may notice stricter
isolation semantics in some cases, you should not depend on this behavior as it may change in the future.
`TinkerTransactionGraph` employs optimistic locking as its locking strategy. This reduces complexity in the design as
there are fewer timeouts that the user needs to manage. However, a consequence of this approach is that a transaction
will throw a `TransactionException` if two different transactions attempt to lock the same element (see "Best Practices"
below).
[[testing-remote-providers]]
==== Testing Remote Providers
These transaction semantics described above may not fit use cases for some production scenarios that require strict
ACID-like transactions. Therefore, it is recommended that `TinkerTransactionGraph` be used as a `Graph` for test
environments where you still require access to a `Graph` that supports transactions. `TinkerTransactionGraph` does fully
support TinkerPop's `Transaction` interface which still makes it a useful `Graph` for exploring the
<<transactions,Transaction API>>.
A common scenario where this sort of testing is helpful is with <<connecting-rgp, Remote Graph Providers>>, where
developing unit tests might be hard against a graph service. Instead, configure `TinkerTransactionGraph`, either in an
embedded style if using Java or with Gremlin Server for other cases.
[source,java]
public class GraphService { private final GraphTraversalSource g;
public GraphService(GraphTraversalSource g) {
this.g = g;
}
public List<Vertex> getPersons() {
return g.V().hasLabel("person").toList();
}
}
public class GraphServiceTest { private static final TinkerTransactionGraph graph = TinkerTransactionGraph.open(); private static final GraphTraversalSource g = traversal.with(graph); private static final GraphService service = new GraphService(g);
@Test
public void shouldGetPersons() {
final List<Vertex> persons = service.getPersons();
assertEquals(6, persons.size());
}
}
public class GraphServiceTest { private static final GraphTraversalSource g = traversal.with( new DriverRemoteConnection('ws://localhost:8182/gremlin')); private static final GraphService service = new GraphService(g);
@Test
public void shouldGetPersons() {
final List<Vertex> persons = service.getPersons();
assertEquals(6, persons.size());
}
}
WARNING: There can be subtle behavioral differences between TinkerGraph and the graph ultimately intended for use. Be aware of the differences when writing tests to ensure that you are testing behaviors of your applications appropriately. ==== Best Practices Errors can occur before a transaction gets committed. Specifically for `TinkerTransactionGraph`, you may encounter many `TransactionException` errors in a highly concurrent environment due its optimistic approach to locking. Users should follow the try-catch-rollback pattern described in the link:https://tinkerpop.apache.org/docs/3.8.0-SNAPSHOT/reference/#transactions[transactions] section in combination with exponential backoff based retries to mitigate this issue. ==== Performance Considerations While transactions impose minimal impact for mutating workloads, users should expect performance degradation for read-only work relative to the non-transactional configuration. However, its approach to locking (write-only, optimistic) and its in-memory nature, TinkerTransactionGraph is likely faster than other `Graph` implementations that support transactions. ==== Examples Constructing a simple graph using `TinkerTransactionGraph` in Java is presented below: [source,java]
Graph graph = TinkerTransactionGraph.open(); g = traversal().with(graph) GraphTraversalSource gtx = g.tx().begin();
try { Vertex marko = gtx.addV("person").property("name","marko").property("age",29).next(); Vertex lop = gtx.addV("software").property("name","lop").property("lang","java").next(); gtx.addE("created").from(marko).to(lop).property("weight",0.6d).iterate();
gtx.tx().commit();
} catch (Exception ex) {
gtx.tx().rollback();
}
The above Gremlin creates two vertices named "marko" and "lop" and connects them via a created-edge with a weight=0.6
property. In case of any errors `rollback()` will be called and no changes will be performed.
To use the embedded TinkerTransactionGraph in Gremlin Console:
++++
<section class="tabs tabs-2">
<input id="tab-1761594991-7" type="radio" name="radio-set-1761594991-7" class="tab-selector-1" checked="checked" />
<label for="tab-1761594991-7" class="tab-label-1">console (groovy)</label>
<input id="tab-1761594991-8" type="radio" name="radio-set-1761594991-7" class="tab-selector-2" />
<label for="tab-1761594991-8" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerTransactionGraph.open() //// <1> =⇒tinkertransactiongraph[vertices:0 edges:0] gremlin> g = traversal().with(graph) //// <2> =⇒graphtraversalsource[tinkertransactiongraph[vertices:0 edges:0], standard] gremlin> g.addV('test').property('name','one') =⇒v[0] gremlin> g.tx().commit() //// <3> =⇒null gremlin> g.V().valueMap() =⇒[name:[one]] gremlin> g.addV('test').property('name','two') //// <4> =⇒v[2] gremlin> g.V().valueMap() =⇒[name:[one]] =⇒[name:[two]] gremlin> g.tx().rollback() //// <5> =⇒null gremlin> g.V().valueMap() =⇒[name:[one]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerTransactionGraph.open() //// <1> g = traversal().with(graph) //// <2> g.addV('test').property('name','one') g.tx().commit() //// <3> g.V().valueMap() g.addV('test').property('name','two') //// <4> g.V().valueMap() g.tx().rollback() //// <5> g.V().valueMap()
++++
</div>
</div>
</section>
++++
<1> Open transactional graph.
<2> Spawn a GraphTraversalSource with transactional graph.
<3> Commit the add vertex operation
<4> Add a second vertex without committing
<5> Rollback the change
// LAST LINE
////
////
[[neo4j-gremlin]]
== Neo4j-Gremlin (Deprecated)
WARNING: Deprecated: Neo4j-Gremlin is not compatible with versions of Neo4j beyond 3.4 (Reached End of Life March 31, 2020).
For this reason, use of Neo4j-Gremlin is not recommended for production environments. Neo4j-Gremlin is expected to
remain compatible with upcoming releases of TinkerPop, however long term support is not guaranteed. Neo4j-Gremlin may
be dropped from future versions of TinkerPop if compatibility cannot reasonably be maintained. Alternative TinkerPop
enabled graph providers can be found on the link:https://tinkerpop.apache.org/providers.html[TinkerPop site].
WARNING: Neo4j-Gremlin can work with JDK17, but requires the use of the `--add-opens` flag to be provided to the JVM
as follows: `--add-opens=java.base/sun.nio.ch=ALL-UNNAMED`.
[source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>neo4j-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency> <!-- neo4j-tinkerpop-api-impl is NOT Apache 2 licensed - more information below -→ <!-- supports Neo4j 3.4.11 -→ <dependency> <groupId>org.neo4j</groupId> <artifactId>neo4j-tinkerpop-api-impl</artifactId> <version>0.9-3.4.0</version> </dependency>
link:http://neo4j.com[Neo4j, Inc.] are the developers of the OLTP-based link:http://neo4j.com[Neo4j graph database]. WARNING: Unless under a commercial agreement with Neo4j, Inc., Neo4j is licensed link:http://en.wikipedia.org/wiki/Affero_General_Public_License[AGPL]. The `neo4j-gremlin` module is licensed Apache2 because it only references the Apache2-licensed Neo4j API (not its implementation). Note that neither the <<gremlin-console,Gremlin Console>> nor <<gremlin-server,Gremlin Server>> distribute with the Neo4j implementation binaries. To access the binaries, use the `:install` command to download binaries from link:http://search.maven.org/[Maven Central Repository]. IMPORTANT: When connecting to existing Neo4j databases, ensure that this database is compatible with the version of Neo4j that TinkerPop currently supports in the `neo4j-tinkerpop-api-impl`. TIP: For configuring Grape, the dependency resolver of Groovy, please refer to the <<gremlin-applications,Gremlin Applications>> section. [source,groovy]
gremlin> :install org.apache.tinkerpop neo4j-gremlin 3.8.0-SNAPSHOT =⇒Loaded: [org.apache.tinkerpop, neo4j-gremlin, 3.8.0-SNAPSHOT] - restart the console to use [tinkerpop.neo4j] gremlin> :q … gremlin> :plugin use tinkerpop.neo4j =⇒tinkerpop.neo4j activated gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[EmbeddedGraphDatabase [/tmp/neo4j]]
TIP: To host Neo4j in <<gremlin-server,Gremlin Server>>, the dependencies must first be "installed" or otherwise
copied to the Gremlin Server path. The automated method for doing this would be to execute
`bin/gremlin-server.sh install org.apache.tinkerpop neo4j-gremlin 3.8.0-SNAPSHOT`. Once installed, the Gremlin Server
configuration file must be edited to include the `Neo4jGremlinPlugin` as shown in `conf/gremlin-server-neo4j.yaml`.
=== Indices
Neo4j 2.x indices leverage vertex labels to partition the index space. TinkerPop does not provide method interfaces
for defining schemas/indices for the underlying graph system. Thus, in order to create indices, it is important to
call the Neo4j API directly.
NOTE: `Neo4jGraphStep` will attempt to discern which indices to use when executing a traversal of the form `g.V().has()`.
The Gremlin-Console session below demonstrates Neo4j indices. For more information, please refer to the Neo4j documentation:
* Manipulating indices with link:http://neo4j.com/docs/developer-manual/current/#query-schema-index[Cypher].
* Manipulating indices with the Neo4j link:http://neo4j.com/docs/stable/tutorials-java-embedded-new-index.html[Java API].
++++
<section class="tabs tabs-2">
<input id="tab-1761595003-1" type="radio" name="radio-set-1761595003-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761595003-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595003-2" type="radio" name="radio-set-1761595003-1" class="tab-selector-2" />
<label for="tab-1761595003-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard] gremlin> graph.cypher("CREATE INDEX ON :person(name)") gremlin> graph.tx().commit() //// <1> =⇒null gremlin> g.addV('person').property('name','marko') =⇒v[0] gremlin> g.addV('dog').property('name','puppy') =⇒v[1] gremlin> g.V().hasLabel('person').has('name','marko').values('name') =⇒marko gremlin> graph.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = Neo4jGraph.open('/tmp/neo4j') g = traversal().with(graph) graph.cypher("CREATE INDEX ON :person(name)") graph.tx().commit() //// <1> g.addV('person').property('name','marko') g.addV('dog').property('name','puppy') g.V().hasLabel('person').has('name','marko').values('name') graph.close()
++++
</div>
</div>
</section>
++++
<1> Schema mutations must happen in a different transaction than graph mutations
Below demonstrates the runtime benefits of indices and demonstrates how if there is no defined index (only vertex
labels), a linear scan of the vertex-label partition is still faster than a linear scan of all vertices.
++++
<section class="tabs tabs-2">
<input id="tab-1761595003-3" type="radio" name="radio-set-1761595003-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761595003-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595003-4" type="radio" name="radio-set-1761595003-3" class="tab-selector-2" />
<label for="tab-1761595003-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard] gremlin> g.io('data/grateful-dead.xml').read().iterate() gremlin> g.tx().commit() =⇒null gremlin> clock(1000) {g.V().hasLabel('artist').has('name','Garcia').iterate()} //// <1> =⇒0.268127742 gremlin> graph.cypher("CREATE INDEX ON :artist(name)") //// <2> gremlin> g.tx().commit() =⇒null gremlin> Thread.sleep(5000) //// <3> =⇒null gremlin> clock(1000) {g.V().hasLabel('artist').has('name','Garcia').iterate()} //// <4> =⇒0.028329121999999998 gremlin> clock(1000) {g.V().has('name','Garcia').iterate()} //// <5> =⇒0.475424166 gremlin> graph.cypher("DROP INDEX ON :artist(name)") //// <6> gremlin> g.tx().commit() =⇒null gremlin> graph.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = Neo4jGraph.open('/tmp/neo4j') g = traversal().with(graph) g.io('data/grateful-dead.xml').read().iterate() g.tx().commit() clock(1000) {g.V().hasLabel('artist').has('name','Garcia').iterate()} //// <1> graph.cypher("CREATE INDEX ON :artist(name)") //// <2> g.tx().commit() Thread.sleep(5000) //// <3> clock(1000) {g.V().hasLabel('artist').has('name','Garcia').iterate()} //// <4> clock(1000) {g.V().has('name','Garcia').iterate()} //// <5> graph.cypher("DROP INDEX ON :artist(name)") //// <6> g.tx().commit() graph.close()
++++
</div>
</div>
</section>
++++
<1> Find all artists whose name is Garcia which does a linear scan of the artist vertex-label partition.
<2> Create an index for all artist vertices on their name property.
<3> Neo4j indices are eventually consistent so this stalls to give the index time to populate itself.
<4> Find all artists whose name is Garcia which uses the pre-defined schema index.
<5> Find all vertices whose name is Garcia which requires a linear scan of all the data in the graph.
<6> Drop the created index.
=== Cypher
image::gremlin-loves-cypher.png[width=400]
NeoTechnology are the creators of the graph pattern-match query language link:https://neo4j.com/developer/cypher-query-language/[Cypher].
It is possible to leverage Cypher from within Gremlin by using the `Neo4jGraph.cypher()` graph traversal method.
++++
<section class="tabs tabs-2">
<input id="tab-1761595003-5" type="radio" name="radio-set-1761595003-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761595003-5" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595003-6" type="radio" name="radio-set-1761595003-5" class="tab-selector-2" />
<label for="tab-1761595003-6" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard] gremlin> g.io('data/tinkerpop-modern.kryo').read().iterate() gremlin> graph.cypher('MATCH (a {name:"marko"}) RETURN a') =⇒[a:v[0]] gremlin> graph.cypher('MATCH (a {name:"marko"}) RETURN a').select('a').out('knows').values('name') =⇒josh =⇒vadas gremlin> graph.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = Neo4jGraph.open('/tmp/neo4j') g = traversal().with(graph) g.io('data/tinkerpop-modern.kryo').read().iterate() graph.cypher('MATCH (a {name:"marko"}) RETURN a') graph.cypher('MATCH (a {name:"marko"}) RETURN a').select('a').out('knows').values('name') graph.close()
++++
</div>
</div>
</section>
++++
Thus, like <<match-step,`match()`>>-step in Gremlin, it is possible to do a declarative pattern match and then move
back into imperative Gremlin.
TIP: For those developers using <<gremlin-server,Gremlin Server>> against Neo4j, it is possible to do Cypher queries
by simply placing the Cypher string in `graph.cypher(...)` before submission to the server.
=== Multi-Label
TinkerPop requires every `Element` to have a single, immutable string label (i.e. a `Vertex`, `Edge`, and
`VertexProperty`). In Neo4j, a `Node` (vertex) can have an
link:http://neo4j.com/docs/developer-manual/current/#graphdb-neo4j-labels[arbitrary number of labels] while a `Relationship`
(edge) can have one and only one. Furthermore, in Neo4j, `Node` labels are mutable while `Relationship` labels are
not. In order to handle this mismatch, three `Neo4jVertex` specific methods exist in Neo4j-Gremlin.
[source,java]
public Set<String> labels() // get all the labels of the vertex
public void addLabel(String label) // add a label to the vertex
public void removeLabel(String label) // remove a label from the vertex
An example use case is presented below.
++++
<section class="tabs tabs-2">
<input id="tab-1761595003-7" type="radio" name="radio-set-1761595003-7" class="tab-selector-1" checked="checked" />
<label for="tab-1761595003-7" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595003-8" type="radio" name="radio-set-1761595003-7" class="tab-selector-2" />
<label for="tab-1761595003-8" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = Neo4jGraph.open('/tmp/neo4j') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard] gremlin> vertex = (Neo4jVertex) g.addV('human::animal').next() //// <1> =⇒v[0] gremlin> vertex.label() //// <2> =⇒animal::human gremlin> vertex.labels() //// <3> =⇒animal =⇒human gremlin> vertex.addLabel('organism') //// <4> =⇒null gremlin> vertex.label() =⇒animal::human::organism gremlin> vertex.removeLabel('human') //// <5> =⇒null gremlin> vertex.labels() =⇒animal =⇒organism gremlin> vertex.addLabel('organism') //// <6> =⇒null gremlin> vertex.labels() =⇒animal =⇒organism gremlin> vertex.removeLabel('human') //// <7> =⇒null gremlin> vertex.label() =⇒animal::organism gremlin> g.V().has(label,'organism') //// <8> gremlin> g.V().has(label,of('organism')) //// <9> =⇒v[0] gremlin> g.V().has(label,of('organism')).has(label,of('animal')) =⇒v[0] gremlin> g.V().has(label,of('organism').and(of('animal'))) =⇒v[0] gremlin> graph.close() =⇒null
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = Neo4jGraph.open('/tmp/neo4j') g = traversal().with(graph) vertex = (Neo4jVertex) g.addV('human::animal').next() //// <1> vertex.label() //// <2> vertex.labels() //// <3> vertex.addLabel('organism') //// <4> vertex.label() vertex.removeLabel('human') //// <5> vertex.labels() vertex.addLabel('organism') //// <6> vertex.labels() vertex.removeLabel('human') //// <7> vertex.label() g.V().has(label,'organism') //// <8> g.V().has(label,of('organism')) //// <9> g.V().has(label,of('organism')).has(label,of('animal')) g.V().has(label,of('organism').and(of('animal'))) graph.close()
++++
</div>
</div>
</section>
++++
<1> Typecasting to a `Neo4jVertex` is only required in Java.
<2> The standard `Vertex.label()` method returns all the labels in alphabetical order concatenated using `::`.
<3> `Neo4jVertex.labels()` method returns the individual labels as a set.
<4> `Neo4jVertex.addLabel()` method adds a single label.
<5> `Neo4jVertex.removeLabel()` method removes a single label.
<6> Labels are unique and thus duplicate labels don't exist.
<7> If a label that does not exist is removed, nothing happens.
<8> `P.eq()` does a full string match and should only be used if multi-labels are not leveraged.
<9> `LabelP.of()` is specific to `Neo4jGraph` and used for multi-label matching.
IMPORTANT: `LabelP.of()` is only required if multi-labels are leveraged. `LabelP.of()` is used when
filtering/looking-up vertices by their label(s) as the standard `P.eq()` does a direct match on the `::`-representation
of `vertex.label()`
=== Configuration
The previous examples showed how to create a `Neo4jGraph` with the default configuration, but Neo4j has many other
options to initialize it that are native to Neo4j. In order to expose those, `Neo4jGraph` has an `open(Configuration)`
method which takes a standard Apache Configuration object. The same can be said of the standard method for creating
`Graph` instances with `GraphFactory`. Each configuration key that Neo4j has must simply be prefixed with
`gremlin.neo4j.conf.` and the suffix configuration key will be passed through to Neo4j.
NOTE: Gremlin Server uses `GraphFactory` to instantiate the `Graph` instances it manages, so the example below is also
relevant for that purpose as well.
For example, a standard configuration file called `neo4j.properties` that sets the Neo4j
`dbms.index_sampling.background_enabled` setting might look like:
[source,properties]
gremlin.graph=org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph gremlin.neo4j.directory=/tmp/neo4j gremlin.neo4j.conf.dbms.index_sampling.background_enabled=true
which can then be used as follows: [source,text]
gremlin> graph = GraphFactory.open('neo4j.properties') =⇒neo4jgraph[community single [/tmp/neo4j]] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[neo4jgraph[community single [/tmp/neo4j]], standard]
Having this ability to set standard Neo4j configurations makes it possible to better control the initialization of Neo4j itself and provides the ability to enable certain features that would not otherwise be accessible. === Bolt Configuration While `Neo4jGraph` enables Gremlin based queries, users may find it helpful to also be able to connect to that graph with native Neo4j drivers and other tools from that space. It is possible to enable the link:https://boltprotocol.org/[Bolt Protocol] as a way to do this: [source,properties]
gremlin.graph=org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph gremlin.neo4j.directory=/tmp/neo4j gremlin.neo4j.conf.dbms.connector.0.type=BOLT gremlin.neo4j.conf.dbms.connector.0.enabled=true gremlin.neo4j.conf.dbms.connector.0.address=localhost:7687
This configuration is especially relevant to Gremlin Server where one might want to connect to the same graph instance with both Gremlin and Cypher. [source,text]
gremlin> :install org.neo4j.driver neo4j-java-driver 1.7.2 =⇒Loaded: [org.neo4j.driver, neo4j-java-driver, 1.7.2] … // restart Gremlin Console gremlin> import org.neo4j.driver.v1.* =⇒org.apache.tinkerpop.gremlin.structure., org.apache.tinkerpop.gremlin.structure.util., … org.neo4j.driver.v1.* gremlin> driver = GraphDatabase.driver( "bolt://localhost:7687", AuthTokens.basic("neo4j", "neo4j")) Oct 28, 2019 3:28:20 PM org.neo4j.driver.internal.logging.JULogger info INFO: Direct driver instance 1385140107 created for server address localhost:7687 =⇒org.neo4j.driver.internal.InternalDriver@528f8f8b gremlin> session = driver.session() =⇒org.neo4j.driver.internal.NetworkSession@f3fcd59 gremlin> session.run( "CREATE (a:person {name: {name}, age: {age}})", ……1> Values.parameters("name", "stephen", "age", 29)) gremlin> :remote connect tinkerpop.server conf/remote.yaml =⇒Configured localhost/127.0.0.1:8182 gremlin> :remote console =⇒All scripts will now be sent to Gremlin Server - [localhost/127.0.0.1:8182] - type ':remote console' to return to local mode gremlin> g.V().elementMap() =⇒{id=0, label=person, name=stephen, age=29}
=== High Availability Configuration image:neo4j-ha.png[width=400,float=right] TinkerPop supports running Neo4j with its fault tolerant master-slave replication configuration, referred to as its link:http://neo4j.com/docs/operations-manual/current/#_neo4j_cluster_install[High Availability (HA) cluster]. From the TinkerPop perspective, configuring for HA is not that different than configuring for embedded mode as shown above. The main difference is the usage of HA configuration options that enable the cluster. Once connected to a cluster, usage from the TinkerPop perspective is largely the same. In configuring for HA the most important thing to realize is that all Neo4j HA settings are simply passed through the TinkerPop configuration settings given to the `GraphFactory.open()` or `Neo4j.open()` methods. For example, to provide the all-important `ha.server_id` configuration option through TinkerPop, simply prefix that key with the TinkerPop Neo4j key of `gremlin.neo4j.conf`. The following properties demonstrates one of the three configuration files required to setup a simple three node HA cluster on the same machine instance: [source,properties]
gremlin.graph=org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph gremlin.neo4j.directory=/tmp/neo4j.server1 gremlin.neo4j.conf.ha.server_id=1 gremlin.neo4j.conf.ha.initial_hosts=localhost:5001\,localhost:5002\,localhost:5003 gremlin.neo4j.conf.ha.host.coordination=localhost:5001 gremlin.neo4j.conf.ha.host.data=localhost:6001
Assuming the intent is to configure this cluster completely within TinkerPop (perhaps within three separate Gremlin Server instances), the other two configuration files will be quite similar. The second will be: [source,properties]
gremlin.graph=org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph gremlin.neo4j.directory=/tmp/neo4j.server2 gremlin.neo4j.conf.ha.server_id=2 gremlin.neo4j.conf.ha.initial_hosts=localhost:5001\,localhost:5002\,localhost:5003 gremlin.neo4j.conf.ha.host.coordination=localhost:5002 gremlin.neo4j.conf.ha.host.data=localhost:6002
and the third will be: [source,properties]
gremlin.graph=org.apache.tinkerpop.gremlin.neo4j.structure.Neo4jGraph gremlin.neo4j.directory=/tmp/neo4j.server3 gremlin.neo4j.conf.ha.server_id=3 gremlin.neo4j.conf.ha.initial_hosts=localhost:5001\,localhost:5002\,localhost:5003 gremlin.neo4j.conf.ha.host.coordination=localhost:5003 gremlin.neo4j.conf.ha.host.data=localhost:6003
IMPORTANT: The backslashes in the values provided to `gremlin.neo4j.conf.ha.initial_hosts` prevent that configuration setting as being interpreted as a `List`. Create three separate Gremlin Server configuration files and point each at one of these Neo4j files. Since these Gremlin Server instances will be running on the same machine, ensure that each Gremlin Server instance has a unique `port` setting in that Gremlin Server configuration file. Start each Gremlin Server instance to bring the HA cluster online. NOTE: `Neo4jGraph` instances will block until all nodes join the cluster. Neither Gremlin Server nor Neo4j will share transactions across the cluster. Be sure to either use Gremlin Server managed transactions or, if using a session without that option, ensure that all requests are being routed to the same server. This example discussed use of Gremlin Server to demonstrate the HA configuration, but it is also easy to setup with three Gremlin Console instances. Simply start three Gremlin Console instances and use `GraphFactory` to read those configuration files to form the cluster. Furthermore, keep in mind that it is possible to have a Gremlin Console join a cluster handled by two Gremlin Servers or Neo4j Enterprise. The only limits as to how the configuration can be utilized are prescribed by Neo4j itself. Please refer to their link:http://neo4j.com/docs/operations-manual/current/#ha-setup-tutorial[documentation] for more information on how this feature works. // LAST LINE // the hadoop section is split into parts because of serialization issues that are encountered when trying // to generate graph/spark without restarting the console and currently the only way to force a restart of the // console is to have a new asciidoc page. //// //// [[hadoop-gremlin]] == Hadoop-Gremlin [source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>hadoop-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
image:hadoop-logo-notext.png[width=100,float=left] link:http://hadoop.apache.org/[Hadoop] is a distributed computing framework that is used to process data represented across a multi-machine compute cluster. When the data in the Hadoop cluster represents a TinkerPop graph, then Hadoop-Gremlin can be used to process the graph using both TinkerPop's OLTP and OLAP graph computing models. IMPORTANT: This section assumes that the user has a Hadoop 3.x cluster functioning. For more information on getting started with Hadoop, please see the link:http://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-common/SingleCluster.html[Single Node Setup] tutorial. Moreover, if using `SparkGraphComputer` it is advisable that the reader also familiarize their self with and Spark (link:http://spark.apache.org/docs/latest/quick-start.html[Quick Start]). === Installing Hadoop-Gremlin If using <<gremlin-console,Gremlin Console>>, it is important to install the Hadoop-Gremlin plugin. Note that Hadoop-Gremlin requires a Gremlin Console restart after installing. [source,text]
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> :install org.apache.tinkerpop hadoop-gremlin 3.8.0-SNAPSHOT
==>loaded: [org.apache.tinkerpop, hadoop-gremlin, 3.8.0-SNAPSHOT] - restart the console to use [tinkerpop.hadoop]
gremlin> :q
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> :plugin use tinkerpop.hadoop
==>tinkerpop.hadoop activated
gremlin>
It is important that the `CLASSPATH` environmental variable references `HADOOP_CONF_DIR` and that the configuration files in `HADOOP_CONF_DIR` contain references to a live Hadoop cluster. It is easy to verify a proper configuration from within the Gremlin Console. If `hdfs` references the local file system, then there is a configuration issue. [source,text]
gremlin> hdfs =⇒storage[org.apache.hadoop.fs.LocalFileSystem@65bb9029] // BAD
gremlin> hdfs =⇒storage[DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_1229457199_1, ugi=user (auth:SIMPLE)]]] // GOOD
The `HADOOP_GREMLIN_LIBS` references locations that contain jars that should be uploaded to a respective
distributed cache (link:http://hadoop.apache.org/docs/3.8.0-SNAPSHOT/hadoop-yarn/hadoop-yarn-site/YARN.html[YARN] or SparkServer).
Note that the locations in `HADOOP_GREMLIN_LIBS` can be colon-separated (`:`) and all jars from all locations will
be loaded into the cluster. Locations can be local paths (e.g. `/path/to/libs`), but may also be prefixed with a file
scheme to reference files or directories in different file systems (e.g. `hdfs:///path/to/distributed/libs`).
Typically, only the jars of the respective `GraphComputer` are required to be loaded.
=== Properties Files
`HadoopGraph` makes use of properties files which ultimately get turned into Apache configurations and/or
Hadoop configurations.
[source,text]
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.inputLocation=tinkerpop-modern.kryo
gremlin.hadoop.graphReader=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat
gremlin.hadoop.outputLocation=output
gremlin.hadoop.graphWriter=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat
gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.defaultGraphComputer=org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer
####################################
# Spark Configuration #
####################################
spark.master=local[4]
spark.executor.memory=1g
spark.serializer=org.apache.tinkerpop.gremlin.spark.structure.io.gryo.GryoSerializer
gremlin.spark.persistContext=true
A review of the Hadoop-Gremlin specific properties are provided in the table below. For the respective OLAP
engines (<<sparkgraphcomputer,`SparkGraphComputer`>> refer to their respective documentation for configuration options.
[width="100%",cols="2,10",options="header"]
|=========================================================
|Property |Description
|gremlin.graph |The class of the graph to construct using GraphFactory.
|gremlin.hadoop.inputLocation |The location of the input file(s) for Hadoop-Gremlin to read the graph from.
|gremlin.hadoop.graphReader |The class that the graph input file(s) are read with (e.g. an `InputFormat`).
|gremlin.hadoop.outputLocation |The location to write the computed HadoopGraph to.
|gremlin.hadoop.graphWriter |The class that the graph output file(s) are written with (e.g. an `OutputFormat`).
|gremlin.hadoop.jarsInDistributedCache |Whether to upload the Hadoop-Gremlin jars to a distributed cache (necessary if jars are not on the machines' classpaths).
|gremlin.hadoop.defaultGraphComputer |The default `GraphComputer` to use when `graph.compute()` is called. This is optional.
|=========================================================
Along with the properties above, the numerous link:http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/core-default.xml[Hadoop specific properties]
can be added as needed to tune and parameterize the executed Hadoop-Gremlin job on the respective Hadoop cluster.
IMPORTANT: As the size of the graphs being processed becomes large, it is important to fully understand how the
underlying OLAP engine (e.g. Spark, etc.) works and understand the numerous parameterizations offered by
these systems. Such knowledge can help alleviate out of memory exceptions, slow load times, slow processing times,
garbage collection issues, etc.
=== OLTP Hadoop-Gremlin
image:hadoop-pipes.png[width=180,float=left] It is possible to execute OLTP operations over a `HadoopGraph`.
However, realize that the underlying HDFS files are not random access and thus, to retrieve a vertex, a linear scan
is required. OLTP operations are useful for peeking into the graph prior to executing a long running OLAP job -- e.g.
`g.V().valueMap().limit(10)`.
WARNING: OLTP operations on `HadoopGraph` are not efficient. They require linear scans to execute and are unreasonable
for large graphs. In such large graph situations, make use of <<traversalvertexprogram,TraversalVertexProgram>>
which is the OLAP Gremlin machine.
++++
<section class="tabs tabs-2">
<input id="tab-1761595026-1" type="radio" name="radio-set-1761595026-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761595026-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595026-2" type="radio" name="radio-set-1761595026-1" class="tab-selector-2" />
<label for="tab-1761595026-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> hdfs.copyFromLocal('data/tinkerpop-modern.kryo', 'tinkerpop-modern.kryo') =⇒null gremlin> hdfs.ls() =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) .sparkStaging =⇒rw-r—r-- Yang.Xia supergroup 781 tinkerpop-modern.kryo gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> g = traversal().with(graph) =⇒graphtraversalsource[hadoopgraph[gryoinputformat→gryooutputformat], standard] gremlin> g.V().count() =⇒6 gremlin> g.V().out().out().values('name') =⇒ripple =⇒lop gremlin> g.V().group().by{it.value('name')[1]}.by('name').next() =⇒a=[marko, vadas] =⇒e=[peter] =⇒i=[ripple] =⇒o=[lop, josh]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
hdfs.copyFromLocal('data/tinkerpop-modern.kryo', 'tinkerpop-modern.kryo') hdfs.ls() graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') g = traversal().with(graph) g.V().count() g.V().out().out().values('name') g.V().group().by{it.value('name')[1]}.by('name').next()
++++
</div>
</div>
</section>
++++
=== OLAP Hadoop-Gremlin
image:hadoop-furnace.png[width=180,float=left] Hadoop-Gremlin was designed to execute OLAP operations via
`GraphComputer`. The OLTP examples presented previously are reproduced below, but using `TraversalVertexProgram`
for the execution of the Gremlin traversal.
A `Graph` in TinkerPop can support any number of `GraphComputer` implementations. Out of the box, Hadoop-Gremlin
supports the following two implementations.
* <<sparkgraphcomputer,`SparkGraphComputer`>>: Leverages Apache Spark to execute TinkerPop OLAP computations.
** The graph may fit within the total RAM of the cluster (supports larger graphs). Message passing is coordinated via
Spark map/reduce/join operations on in-memory and disk-cached data (average speed traversals).
TIP: image:gremlin-sugar.png[width=50,float=left] For those wanting to use the <<sugar-plugin,SugarPlugin>> with
their submitted traversal, do `:remote config useSugar true` as well as `:plugin use tinkerpop.sugar` at the start of
the Gremlin Console session if it is not already activated.
[source,text]
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
plugin activated: tinkerpop.hadoop
gremlin> :install org.apache.tinkerpop spark-gremlin 3.8.0-SNAPSHOT
==>loaded: [org.apache.tinkerpop, spark-gremlin, 3.8.0-SNAPSHOT] - restart the console to use [tinkerpop.spark]
gremlin> :q
$ bin/gremlin.sh
\,,,/
(o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
plugin activated: tinkerpop.hadoop
gremlin> :plugin use tinkerpop.spark
==>tinkerpop.spark activated
WARNING: Hadoop and Spark all depend on many of the same libraries (e.g. ZooKeeper, Snappy, Netty, Guava, etc.). Unfortunately, typically these dependencies are not to the same versions of the respective libraries. As such, it is may be necessary to manually cleanup dependency conflicts among different plugins. // LAST LINE //// //// [[sparkgraphcomputer]] ==== SparkGraphComputer [source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>spark-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
image:spark-logo.png[width=175,float=left] link:http://spark.apache.org[Spark] is an Apache Software Foundation
project focused on general-purpose OLAP data processing. Spark provides a hybrid in-memory/disk-based distributed
computing model that is similar to Hadoop's MapReduce model. Spark maintains a fluent function chaining DSL that is
arguably easier for developers to work with than native Hadoop MapReduce. Spark-Gremlin provides an implementation of
the bulk-synchronous parallel, distributed message passing algorithm within Spark and thus, any `VertexProgram` can be
executed over `SparkGraphComputer`.
Furthermore the `lib/` directory should be distributed across all machines in the SparkServer cluster. For this purpose
TinkerPop provides a helper script, which takes the Spark installation directory and the Spark machines as input:
[source,shell]
bin/hadoop/init-tp-spark.sh /usr/local/spark spark@10.0.0.1 spark@10.0.0.2 spark@10.0.0.3
Once the `lib/` directory is distributed, `SparkGraphComputer` can be used as follows.
++++
<section class="tabs tabs-2">
<input id="tab-1761595035-1" type="radio" name="radio-set-1761595035-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761595035-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595035-2" type="radio" name="radio-set-1761595035-1" class="tab-selector-2" />
<label for="tab-1761595035-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> g = traversal().with(graph).withComputer(SparkGraphComputer) =⇒graphtraversalsource[hadoopgraph[gryoinputformat→gryooutputformat], sparkgraphcomputer] gremlin> g.V().count() =⇒6 gremlin> g.V().out().out().values('name') =⇒lop =⇒ripple
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') g = traversal().with(graph).withComputer(SparkGraphComputer) g.V().count() g.V().out().out().values('name')
++++
</div>
</div>
</section>
++++
For using lambdas in Gremlin-Groovy, simply provide `:remote connect` a `TraversalSource` which leverages SparkGraphComputer.
++++
<section class="tabs tabs-2">
<input id="tab-1761595035-3" type="radio" name="radio-set-1761595035-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761595035-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595035-4" type="radio" name="radio-set-1761595035-3" class="tab-selector-2" />
<label for="tab-1761595035-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> g = traversal().with(graph).withComputer(SparkGraphComputer) =⇒graphtraversalsource[hadoopgraph[gryoinputformat→gryooutputformat], sparkgraphcomputer] gremlin> :remote connect tinkerpop.hadoop graph g [INFO] o.a.t.g.h.j.HadoopGremlinPlugin - HADOOP_GREMLIN_LIBS is set to: /Users/Yang.Xia/Repos/tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.8.0-SNAPSHOT-standalone/ext/tinkergraph-gremlin/lib [INFO] o.a.t.g.h.j.HadoopGremlinPlugin - HADOOP_GREMLIN_LIBS is set to: /Users/Yang.Xia/Repos/tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.8.0-SNAPSHOT-standalone/ext/tinkergraph-gremlin/lib [INFO] o.a.t.g.h.j.HadoopGremlinPlugin - HADOOP_GREMLIN_LIBS is set to: /Users/Yang.Xia/Repos/tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.8.0-SNAPSHOT-standalone/ext/tinkergraph-gremlin/lib =⇒useTraversalSource=graphtraversalsource[hadoopgraph[gryoinputformat→gryooutputformat], sparkgraphcomputer] =⇒useSugar=false gremlin> :> g.V().group().by{it.value('name')[1]}.by('name') =⇒[a:[marko,vadas],i:[ripple],e:[peter],o:[lop,josh]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') g = traversal().with(graph).withComputer(SparkGraphComputer) :remote connect tinkerpop.hadoop graph g :> g.V().group().by{it.value('name')[1]}.by('name')
++++
</div>
</div>
</section>
++++
The `SparkGraphComputer` algorithm leverages Spark's caching abilities to reduce the amount of data shuffled across
the wire on each iteration of the <<vertexprogram,`VertexProgram`>>. When the graph is loaded as a Spark RDD
(Resilient Distributed Dataset) it is immediately cached as `graphRDD`. The `graphRDD` is a distributed adjacency
list which encodes the vertex, its properties, and all its incident edges. On the first iteration, each vertex
(in parallel) is passed through `VertexProgram.execute()`. This yields an output of the vertex's mutated state
(i.e. updated compute keys -- `propertyX`) and its outgoing messages. This `viewOutgoingRDD` is then reduced to
`viewIncomingRDD` where the outgoing messages are sent to their respective vertices. If a `MessageCombiner` exists
for the vertex program, then messages are aggregated locally and globally to ultimately yield one incoming message
for the vertex. This reduce sequence is the "message pass." If the vertex program does not terminate on this
iteration, then the `viewIncomingRDD` is joined with the cached `graphRDD` and the process continues. When there
are no more iterations, there is a final join and the resultant RDD is stripped of its edges and messages. This
`mapReduceRDD` is cached and is processed by each <<mapreduce,`MapReduce`>> job in the
<<graphcomputer,`GraphComputer`>> computation.
image::spark-algorithm.png[width=775]
[width="100%",cols="2,10",options="header"]
|========================================================
|Property |Description
|gremlin.hadoop.graphReader |A class for reading a graph-based RDD (e.g. an `InputRDD` or `InputFormat`).
|gremlin.hadoop.graphWriter |A class for writing a graph-based RDD (e.g. an `OutputRDD` or `OutputFormat`).
|gremlin.spark.graphStorageLevel |What `StorageLevel` to use for the cached graph during job execution (default `MEMORY_ONLY`).
|gremlin.spark.persistContext |Whether to create a new `SparkContext` for every `SparkGraphComputer` or to reuse an existing one.
|gremlin.spark.persistStorageLevel |What `StorageLevel` to use when persisted RDDs via `PersistedOutputRDD` (default `MEMORY_ONLY`).
|========================================================
===== InputRDD and OutputRDD
If the provider/user does not want to use Hadoop `InputFormats`, it is possible to leverage Spark's RDD
constructs directly. An `InputRDD` provides a read method that takes a `SparkContext` and returns a graphRDD. Likewise,
and `OutputRDD` is used for writing a graphRDD.
If the graph system provider uses an `InputRDD`, the RDD should maintain an associated `org.apache.spark.Partitioner`. By doing so,
`SparkGraphComputer` will not partition the loaded graph across the cluster as it has already been partitioned by the graph system provider.
This can save a significant amount of time and space resources. If the `InputRDD` does not have a registered partitioner,
`SparkGraphComputer` will partition the graph using a `org.apache.spark.HashPartitioner` with the number of partitions
being either the number of existing partitions in the input (i.e. input splits) or the user specified number of `GraphComputer.workers()`.
If the provider/user finds there are many small HDFS files generated by `OutputRDD`. The option `gremlin.spark.outputRepartition`
can help to repartition the output according to the specified number. The option is disabled by default.
===== Storage Levels
The `SparkGraphComputer` uses `MEMORY_ONLY` to cache the input graph and the output graph by default. Users should be aware of the impact of
different storage levels, since the default settings can quickly lead to memory issues on larger graphs. An overview of Spark's persistence
settings is provided in link:http://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence[Spark's programming guide].
===== Using a Persisted Context
It is possible to persist the graph RDD between jobs within the `SparkContext` (e.g. SparkServer) by leveraging `PersistedOutputRDD`.
Note that `gremlin.spark.persistContext` should be set to `true` or else the persisted RDD will be destroyed when the `SparkContext` closes.
The persisted RDD is named by the `gremlin.hadoop.outputLocation` configuration. Similarly, `PersistedInputRDD` is used with respective
`gremlin.hadoop.inputLocation` to retrieve the persisted RDD from the `SparkContext`.
When using a persistent `SparkContext` the configuration used by the original Spark Configuration will be inherited by all threaded
references to that Spark Context. The exception to this rule are those properties which have a specific thread local effect.
.Thread Local Properties
. spark.jobGroup.id
. spark.job.description
. spark.job.interruptOnCancel
. spark.scheduler.pool
Finally, there is a `spark` object that can be used to manage persisted RDDs (see <<interacting-with-spark, Interacting with Spark>>).
[[clonevertexprogramusingspark]]
===== Using CloneVertexProgram
The <<clonevertexprogram, CloneVertexProgram>> copies a whole graph from any graph `InputFormat` to any graph
`OutputFormat`. TinkerPop provides formats such as `GraphSONOutputFormat`, `GryoOutputFormat` or `ScriptOutputFormat`.
The example below takes a Hadoop graph as the input (in `GryoInputFormat`) and exports it as a GraphSON file
(`GraphSONOutputFormat`).
++++
<section class="tabs tabs-2">
<input id="tab-1761595035-5" type="radio" name="radio-set-1761595035-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761595035-5" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595035-6" type="radio" name="radio-set-1761595035-5" class="tab-selector-2" />
<label for="tab-1761595035-6" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> hdfs.copyFromLocal('data/tinkerpop-modern.kryo', 'tinkerpop-modern.kryo') =⇒null gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> graph.configuration().setProperty('gremlin.hadoop.graphWriter', 'org.apache.tinkerpop.gremlin.hadoop.structure.io.graphson.GraphSONOutputFormat') =⇒null gremlin> graph.compute(SparkGraphComputer).program(CloneVertexProgram.build().create()).submit().get() =⇒result[hadoopgraph[graphsoninputformat→graphsonoutputformat],memory[size:0]] gremlin> hdfs.ls('output') =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) ~g gremlin> hdfs.head('output/~g') =⇒{"id":{"@type":"g:Int32","@value":1},"label":"person","outE":{"created":[{"id":{"@type":"g:Int32","@value":9},"inV":{"@type":"g:Int32","@value":3},"properties":{"weight":{"@type":"g:Double","@value":0.4}}}],"knows":[{"id":{"@type":"g:Int32","@value":7},"inV":{"@type":"g:Int32","@value":2},"properties":{"weight":{"@type":"g:Double","@value":0.5}}},{"id":{"@type":"g:Int32","@value":8},"inV":{"@type":"g:Int32","@value":4},"properties":{"weight":{"@type":"g:Double","@value":1.0}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":0},"value":"marko"}],"age":[{"id":{"@type":"g:Int64","@value":1},"value":{"@type":"g:Int32","@value":29}}]}} =⇒{"id":{"@type":"g:Int32","@value":2},"label":"person","inE":{"knows":[{"id":{"@type":"g:Int32","@value":7},"outV":{"@type":"g:Int32","@value":1},"properties":{"weight":{"@type":"g:Double","@value":0.5}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":2},"value":"vadas"}],"age":[{"id":{"@type":"g:Int64","@value":3},"value":{"@type":"g:Int32","@value":27}}]}} =⇒{"id":{"@type":"g:Int32","@value":3},"label":"software","inE":{"created":[{"id":{"@type":"g:Int32","@value":9},"outV":{"@type":"g:Int32","@value":1},"properties":{"weight":{"@type":"g:Double","@value":0.4}}},{"id":{"@type":"g:Int32","@value":11},"outV":{"@type":"g:Int32","@value":4},"properties":{"weight":{"@type":"g:Double","@value":0.4}}},{"id":{"@type":"g:Int32","@value":12},"outV":{"@type":"g:Int32","@value":6},"properties":{"weight":{"@type":"g:Double","@value":0.2}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":4},"value":"lop"}],"lang":[{"id":{"@type":"g:Int64","@value":5},"value":"java"}]}} =⇒{"id":{"@type":"g:Int32","@value":4},"label":"person","inE":{"knows":[{"id":{"@type":"g:Int32","@value":8},"outV":{"@type":"g:Int32","@value":1},"properties":{"weight":{"@type":"g:Double","@value":1.0}}}]},"outE":{"created":[{"id":{"@type":"g:Int32","@value":10},"inV":{"@type":"g:Int32","@value":5},"properties":{"weight":{"@type":"g:Double","@value":1.0}}},{"id":{"@type":"g:Int32","@value":11},"inV":{"@type":"g:Int32","@value":3},"properties":{"weight":{"@type":"g:Double","@value":0.4}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":6},"value":"josh"}],"age":[{"id":{"@type":"g:Int64","@value":7},"value":{"@type":"g:Int32","@value":32}}]}} =⇒{"id":{"@type":"g:Int32","@value":5},"label":"software","inE":{"created":[{"id":{"@type":"g:Int32","@value":10},"outV":{"@type":"g:Int32","@value":4},"properties":{"weight":{"@type":"g:Double","@value":1.0}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":8},"value":"ripple"}],"lang":[{"id":{"@type":"g:Int64","@value":9},"value":"java"}]}} =⇒{"id":{"@type":"g:Int32","@value":6},"label":"person","outE":{"created":[{"id":{"@type":"g:Int32","@value":12},"inV":{"@type":"g:Int32","@value":3},"properties":{"weight":{"@type":"g:Double","@value":0.2}}}]},"properties":{"name":[{"id":{"@type":"g:Int64","@value":10},"value":"peter"}],"age":[{"id":{"@type":"g:Int64","@value":11},"value":{"@type":"g:Int32","@value":35}}]}}
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
hdfs.copyFromLocal('data/tinkerpop-modern.kryo', 'tinkerpop-modern.kryo') graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') graph.configuration().setProperty('gremlin.hadoop.graphWriter', 'org.apache.tinkerpop.gremlin.hadoop.structure.io.graphson.GraphSONOutputFormat') graph.compute(SparkGraphComputer).program(CloneVertexProgram.build().create()).submit().get() hdfs.ls('output') hdfs.head('output/~g')
++++
</div>
</div>
</section>
++++
// LAST LINE
////
////
=== Input/Output Formats
image:adjacency-list.png[width=300,float=right] Hadoop-Gremlin provides various I/O formats -- i.e. Hadoop
`InputFormat` and `OutputFormat`. All of the formats make use of an link:http://en.wikipedia.org/wiki/Adjacency_list[adjacency list]
representation of the graph where each "row" represents a single vertex, its properties, and its incoming and
outgoing edges.
{empty} +
[[gryo-io-format]]
==== Gryo I/O Format
* **InputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat`
* **OutputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat`
<<gryo,Gryo>> is a binary graph format that leverages link:https://github.com/EsotericSoftware/kryo[Kryo]
to make a compact, binary representation of a vertex. It is recommended that users leverage Gryo given its space/time
savings over text-based representations.
NOTE: The `GryoInputFormat` is splittable.
[[graphson-io-format]]
==== GraphSON I/O Format
* **InputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.graphson.GraphSONInputFormat`
* **OutputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.graphson.GraphSONOutputFormat`
<<graphson,GraphSON>> is a JSON based graph format. GraphSON is a space-expensive graph format in that
it is a text-based markup language. However, it is convenient for many developers to work with as its structure is
simple (easy to create and parse).
The data below represents an adjacency list representation of the classic TinkerGraph toy graph in GraphSON format.
[source,json]
{"id":1,"label":"person","outE":{"created":[{"id":9,"inV":3,"properties":{"weight":0.4}}],"knows":[{"id":7,"inV":2,"properties":{"weight":0.5}},{"id":8,"inV":4,"properties":{"weight":1.0}}]},"properties":{"name":[{"id":0,"value":"marko"}],"age":[{"id":1,"value":29}]}} {"id":2,"label":"person","inE":{"knows":[{"id":7,"outV":1,"properties":{"weight":0.5}}]},"properties":{"name":[{"id":2,"value":"vadas"}],"age":[{"id":3,"value":27}]}} {"id":3,"label":"software","inE":{"created":[{"id":9,"outV":1,"properties":{"weight":0.4}},{"id":11,"outV":4,"properties":{"weight":0.4}},{"id":12,"outV":6,"properties":{"weight":0.2}}]},"properties":{"name":[{"id":4,"value":"lop"}],"lang":[{"id":5,"value":"java"}]}} {"id":4,"label":"person","inE":{"knows":[{"id":8,"outV":1,"properties":{"weight":1.0}}]},"outE":{"created":[{"id":10,"inV":5,"properties":{"weight":1.0}},{"id":11,"inV":3,"properties":{"weight":0.4}}]},"properties":{"name":[{"id":6,"value":"josh"}],"age":[{"id":7,"value":32}]}} {"id":5,"label":"software","inE":{"created":[{"id":10,"outV":4,"properties":{"weight":1.0}}]},"properties":{"name":[{"id":8,"value":"ripple"}],"lang":[{"id":9,"value":"java"}]}} {"id":6,"label":"person","outE":{"created":[{"id":12,"inV":3,"properties":{"weight":0.2}}]},"properties":{"name":[{"id":10,"value":"peter"}],"age":[{"id":11,"value":35}]}}
[[script-io-format]]
==== Script I/O Format
* **InputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.script.ScriptInputFormat`
* **OutputFormat**: `org.apache.tinkerpop.gremlin.hadoop.structure.io.script.ScriptOutputFormat`
`ScriptInputFormat` and `ScriptOutputFormat` take an arbitrary script and use that script to either read or write
`Vertex` objects, respectively. This can be considered the most general `InputFormat`/`OutputFormat` possible in that
Hadoop-Gremlin uses the user provided script for all reading/writing.
===== ScriptInputFormat
The data below represents an adjacency list representation of the classic TinkerGraph toy graph. First line reads,
"vertex `1`, labeled `person` having 2 property values (`marko` and `29`) has 3 outgoing edges; the first edge is
labeled `knows`, connects the current vertex `1` with vertex `2` and has a property value `0.4`, and so on."
[source]
1:person:marko:29 knows:2:0.5,knows:4:1.0,created:3:0.4
2:person:vadas:27
3:project:lop:java
4:person:josh:32 created:3:0.4,created:5:1.0
5:project:ripple:java
6:person:peter:35 created:3:0.2
There is no corresponding `InputFormat` that can parse this particular file (or some adjacency list variant of it).
As such, `ScriptInputFormat` can be used. With `ScriptInputFormat` a script is stored in HDFS and leveraged by each
mapper in the Hadoop job. The script must have the following method defined:
[source,groovy]
def parse(String line) { ... }
In order to create vertices and edges, the `parse()` method gets access to a global variable named `graph`, which holds
the local `StarGraph` for the current line/vertex.
An appropriate `parse()` for the above adjacency list file is:
[source,groovy]
def parse(line) {
def parts = line.split(/ /)
def (id, label, name, x) = parts[0].split(/:/).toList()
def v1 = graph.addVertex(T.id, id, T.label, label)
if (name != null) v1.property('name', name) // first value is always the name
if (x != null) {
// second value depends on the vertex label; it's either
// the age of a person or the language of a project
if (label.equals('project')) v1.property('lang', x)
else v1.property('age', Integer.valueOf(x))
}
if (parts.length == 2) {
parts[1].split(/,/).grep { !it.isEmpty() }.each {
def (eLabel, refId, weight) = it.split(/:/).toList()
def v2 = graph.addVertex(T.id, refId)
v1.addOutEdge(eLabel, v2, 'weight', Double.valueOf(weight))
}
}
return v1
}
The resultant `Vertex` denotes whether the line parsed yielded a valid Vertex. As such, if the line is not valid
(e.g. a comment line, a skip line, etc.), then simply return `null`.
===== ScriptOutputFormat Support
The principle above can also be used to convert a vertex to an arbitrary `String` representation that is ultimately
streamed back to a file in HDFS. This is the role of `ScriptOutputFormat`. `ScriptOutputFormat` requires that the
provided script maintains a method with the following signature:
[source,groovy]
def stringify(Vertex vertex) { ... }
An appropriate `stringify()` to produce output in the same format that was shown in the `ScriptInputFormat` sample is:
[source,groovy]
def stringify(vertex) {
def v = vertex.values('name', 'age', 'lang').inject(vertex.id(), vertex.label()).join(':')
def outE = vertex.outE().map {
def e = it.get()
e.values('weight').inject(e.label(), e.inV().next().id()).join(':')
}.join(',')
return [v, outE].join('\t')
}
=== Storage Systems
Hadoop-Gremlin provides two implementations of the `Storage` API:
* `FileSystemStorage`: Access HDFS and local file system data.
* `SparkContextStorage`: Access Spark persisted RDD data.
[[interacting-with-hdfs]]
==== Interacting with HDFS
The distributed file system of Hadoop is called link:http://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system[HDFS].
The results of any OLAP operation are stored in HDFS accessible via `hdfs`. For local file system access, there is `fs`.
++++
<section class="tabs tabs-2">
<input id="tab-1761595049-1" type="radio" name="radio-set-1761595049-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761595049-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595049-2" type="radio" name="radio-set-1761595049-1" class="tab-selector-2" />
<label for="tab-1761595049-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> graph.compute(SparkGraphComputer).program(PeerPressureVertexProgram.build().create(graph)).mapReduce(ClusterCountMapReduce.build().memoryKey('clusterCount').create()).submit().get(); =⇒result[hadoopgraph[gryoinputformat→gryooutputformat],memory[size:1]] gremlin> hdfs.ls() =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) .sparkStaging =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) output =⇒rw-r—r-- Yang.Xia supergroup 781 tinkerpop-modern.kryo gremlin> hdfs.ls('output') =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) clusterCount =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) ~g gremlin> hdfs.head('output', GryoInputFormat) =⇒v[4] =⇒v[1] =⇒v[6] =⇒v[3] =⇒v[5] =⇒v[2] gremlin> hdfs.head('output', 'clusterCount', SequenceFileInputFormat) =⇒2 gremlin> hdfs.rm('output') =⇒true gremlin> hdfs.ls() =⇒rwxr-xr-x Yang.Xia supergroup 0 (D) .sparkStaging =⇒rw-r—r-- Yang.Xia supergroup 781 tinkerpop-modern.kryo
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') graph.compute(SparkGraphComputer).program(PeerPressureVertexProgram.build().create(graph)).mapReduce(ClusterCountMapReduce.build().memoryKey('clusterCount').create()).submit().get(); hdfs.ls() hdfs.ls('output') hdfs.head('output', GryoInputFormat) hdfs.head('output', 'clusterCount', SequenceFileInputFormat) hdfs.rm('output') hdfs.ls()
++++
</div>
</div>
</section>
++++
[[interacting-with-spark]]
==== Interacting with Spark
If a Spark context is persisted, then Spark RDDs will remain the Spark cache and accessible over subsequent jobs.
RDDs are retrieved and saved to the `SparkContext` via `PersistedInputRDD` and `PersistedOutputRDD` respectively.
Persisted RDDs can be accessed using `spark`.
++++
<section class="tabs tabs-2">
<input id="tab-1761595049-3" type="radio" name="radio-set-1761595049-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761595049-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595049-4" type="radio" name="radio-set-1761595049-3" class="tab-selector-2" />
<label for="tab-1761595049-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> Spark.create('local[4]') =⇒org.apache.spark.SparkContext@3b235623 gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') =⇒hadoopgraph[gryoinputformat→gryooutputformat] gremlin> graph.configuration().setProperty('gremlin.hadoop.graphWriter', PersistedOutputRDD.class.getCanonicalName()) =⇒null gremlin> graph.configuration().setProperty('gremlin.spark.persistContext',true) =⇒null gremlin> graph.compute(SparkGraphComputer).program(PeerPressureVertexProgram.build().create(graph)).mapReduce(ClusterCountMapReduce.build().memoryKey('clusterCount').create()).submit().get(); =⇒result[hadoopgraph[persistedinputrdd→persistedoutputrdd],memory[size:1]] gremlin> spark.ls() gremlin> spark.ls('output') =⇒output/clusterCount [Memory Deserialized 1x Replicated] =⇒output/~g [Memory Deserialized 1x Replicated] gremlin> spark.head('output', PersistedInputRDD) =⇒v[4] =⇒v[1] =⇒v[6] =⇒v[3] =⇒v[5] =⇒v[2] gremlin> spark.head('output', 'clusterCount', PersistedInputRDD) =⇒2 gremlin> spark.rm('output') =⇒true gremlin> spark.ls()
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
Spark.create('local[4]') graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') graph.configuration().setProperty('gremlin.hadoop.graphWriter', PersistedOutputRDD.class.getCanonicalName()) graph.configuration().setProperty('gremlin.spark.persistContext',true) graph.compute(SparkGraphComputer).program(PeerPressureVertexProgram.build().create(graph)).mapReduce(ClusterCountMapReduce.build().memoryKey('clusterCount').create()).submit().get(); spark.ls() spark.ls('output') spark.head('output', PersistedInputRDD) spark.head('output', 'clusterCount', PersistedInputRDD) spark.rm('output') spark.ls()
++++
</div>
</div>
</section>
++++
// LAST LINE
////
////
[[compilers]]
= Gremlin Compilers
There are many languages built to query data. SQL is typically used to query relational data. There is SPARQL for RDF
data. Cypher is used to do pattern matching in graph data. The list could go on. Compilers convert languages like
these to Gremlin so that it becomes possible to use them in any context that Gremlin is used. In other words, a
Gremlin Compiler enables a particular query language to work on any TinkerPop-enabled graph system.
[[sparql-gremlin]]
== SPARQL-Gremlin
image::gremlintron.png[width=225]
The SPARQL-Gremlin compiler, transforms link:https://en.wikipedia.org/wiki/SPARQL[SPARQL] queries into Gremlin
traversals. It uses the https://jena.apache.org/index.html[Apache Jena] SPARQL processor
link:https://jena.apache.org/documentation/query/index.html[ARQ], which provides access to a syntax tree of a
SPARQL query.
The goal of this work is to bridge the query interoperability gap between the two famous, yet fairly disconnected,
graph communities: Semantic Web (which relies on the RDF data model) and Graph database (which relies on property graph
data model).
NOTE: The foundational research work on SPARQL-Gremlin compiler (aka Gremlinator) can be found in the
link:https://arxiv.org/pdf/1801.02911.pdf[Gremlinator paper]. This paper presents the graph query language semantics of
SPARQL and Gremlin, and a formal mapping between SPARQL pattern matching graph patterns and Gremlin traversals.
[source,xml]
<dependency> <groupId>org.apache.tinkerpop</groupId> <artifactId>sparql-gremlin</artifactId> <version>3.8.0-SNAPSHOT</version> </dependency>
The SPARQL-Gremlin compiler converts link:https://en.wikipedia.org/wiki/SPARQL[SPARQL] queries into Gremlin so that they can be executed across any TinkerPop-enabled graph system. To use this compiler in the Gremlin Console, first install and activate the "tinkerpop.sparql" plugin: [source,text]
gremlin> :install org.apache.tinkerpop sparql-gremlin 3.8.0-SNAPSHOT =⇒Loaded: [org.apache.tinkerpop, sparql-gremlin, 3.8.0-SNAPSHOT] gremlin> :plugin use tinkerpop.sparql =⇒tinkerpop.sparql activated
Installing this plugin will download appropriate dependencies and import certain classes to the console so that they
may be used as follows:
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-1" type="radio" name="radio-set-1761595063-1" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-1" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-2" type="radio" name="radio-set-1761595063-1" class="tab-selector-2" />
<label for="tab-1761595063-2" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> graph = TinkerFactory.createModern() =⇒tinkergraph[vertices:6 edges:6] gremlin> g = traversal(SparqlTraversalSource).with(graph) //// <1> =⇒sparqltraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> g.sparql("""SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age } ORDER BY ASC(?age)""") //// <2> =⇒[name:vadas,age:27] =⇒[name:marko,age:29] =⇒[name:josh,age:32] =⇒[name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
graph = TinkerFactory.createModern() g = traversal(SparqlTraversalSource).with(graph) //// <1> g.sparql("""SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age } ORDER BY ASC(?age)""") <2>
++++
</div>
</div>
</section>
++++
<1> Define `g` as a `TraversalSource` that uses the `SparqlTraversalSource` - by default, the `traversal()` method
usually returns a `GraphTraversalSource` which includes the standard Gremlin starts steps like `V()` or `E()`. In this
case, the `SparqlTraversalSource` enables starts steps that are specific to SPARQL only - in this case the `sparql()`
start step.
<2> Execute a SPARQL query against the TinkerGraph instance. The `SparqlTraversalSource` uses a
<<traversalstrategy,TraversalStrategy>> to transparently converts that SPARQL query into a standard Gremlin traversal
and then when finally iterated, executes that against the TinkerGraph.
[[prefixes]]
=== Prefixes
The SPARQL-Gremlin compiler supports the following prefixes to traverse the graph:
[cols=",",options="header",]
|====================================
|Prefix |Purpose
|`v:<id\|label\|<name>>` |access to vertex id, label or property value
|`e:<label>` |out-edge traversal
|`p:<name>` |property traversal
|====================================
Note that element IDs and labels are treated like normal properties, hence they can be accessed using the same pattern:
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-3" type="radio" name="radio-set-1761595063-3" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-3" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-4" type="radio" name="radio-set-1761595063-3" class="tab-selector-2" />
<label for="tab-1761595063-4" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?name ?id ?label WHERE { ?element v:name ?name . ?element v:id ?id . ?element v:label ?label .}""") =⇒[name:marko,id:1,label:person] =⇒[name:vadas,id:2,label:person] =⇒[name:lop,id:3,label:software] =⇒[name:josh,id:4,label:person] =⇒[name:ripple,id:5,label:software] =⇒[name:peter,id:6,label:person]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?name ?id ?label WHERE { ?element v:name ?name . ?element v:id ?id . ?element v:label ?label .}""")
++++
</div>
</div>
</section>
++++
[[supported-queries]]
=== Supported Queries
The SPARQL-Gremlin compiler currently supports translation of the SPARQL 1.0 specification, especially `SELECT`
queries, though there is an on-going effort to cover the entire SPARQL 1.1 query feature spectrum. The supported
SPARQL query types are:
* Union
* Optional
* Order-By
* Group-By
* STAR-shaped or _neighbourhood queries_
* Query modifiers, such as:
** Filter with _restrictions_
** Count
** LIMIT
** OFFSET
[[limitations]]
=== Limitations
The current implementation of SPARQL-Gremlin compiler (i.e. SPARQL-Gremlin) does not support the following cases:
* SPARQL queries with variables in the predicate position are not currently covered, with an exception of the following
case:
[source,groovy]
g.sparql("""SELECT * WHERE { ?x ?y ?z . }""")
* A SPARQL Union query with un-balanced patterns, i.e. a gremlin union traversal can only be generated if the input SPARQL query has the same number of patterns on both the side of the union operator. For instance, the following SPARQL query cannot be mapped, since a union is executed between different number of graph patterns (two patterns `union` 1 pattern). [source,groovy]
g.sparql("""SELECT * WHERE { {?person e:created ?software . ?person v:name "josh" .} UNION {?software v:lang "java" .} }""")
* A non-Group key variable cannot be projected in a SPARQL query. This is a SPARQL language limitation rather than that of Gremlin/TinkerPop. Apache Jena throws the exception "Non-group key variable in SELECT" if this occurs. For instance, in a SPARQL query with GROUP-BY clause, only the variable on which the grouping is declared, can be projected. The following query is valid: [source,groovy]
g.sparql("""SELECT ?age WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name .} GROUP BY (?age)""")
Whereas, the following SPARQL query will be invalid: [source,groovy]
g.sparql("""SELECT ?person WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name .} GROUP BY (?age)""")
* In a SPARQL query with an ORDER-BY clause, the ordering occurs with respect to the first projected variable in the query. It is possible to choose any number of variable to be projected, however, the first variable in the selection will be the ordering decider. For instance, in the query: [source,groovy]
g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name . } ORDER BY (?age)""")
the result set will be ordered according to the `?name` variable (in ascending order by default) despite having passed `?age` in the order by. Whereas, for the following query: [source,groovy]
g.sparql("""SELECT ?age ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name . } ORDER BY (?age)""")
the result set will be ordered according to the `?age` (as it is the first projected variable). Finally, for the select all case (`SELECT *`): [source,groovy]
g.sparql("""SELECT * WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name . } ORDER BY (?age)""")
the the variable encountered first will be the ordering decider, i.e. since we have `?person` encountered first,
the result set will be ordered according to the `?person` variable (which are vertex id).
* In the current implementation, `OPTIONAL` clause doesn't work under nesting with `UNION` clause (i.e. multiple optional
clauses with in a union clause) and `ORDER-By` clause (i.e. declaring ordering over triple patterns within optional
clauses). Everything else with SPARQL `OPTIONAL` works just fine.
[[examples]]
=== Examples
The following section presents examples of SPARQL queries that are currently covered by the SPARQL-Gremlin compiler.
==== Select All
Select all vertices in the graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-5" type="radio" name="radio-set-1761595063-5" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-5" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-6" type="radio" name="radio-set-1761595063-5" class="tab-selector-2" />
<label for="tab-1761595063-6" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT * WHERE { }""") =⇒v[1] =⇒v[2] =⇒v[3] =⇒v[4] =⇒v[5] =⇒v[6]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT * WHERE { }""")
++++
</div>
</div>
</section>
++++
==== Match Constant Values
Select all vertices with the label `person`.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-7" type="radio" name="radio-set-1761595063-7" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-7" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-8" type="radio" name="radio-set-1761595063-7" class="tab-selector-2" />
<label for="tab-1761595063-8" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT * WHERE { ?person v:label "person" .}""") =⇒v[1] =⇒v[2] =⇒v[4] =⇒v[6]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT * WHERE { ?person v:label "person" .}""")
++++
</div>
</div>
</section>
++++
==== Select Specific Elements
Select the values of the properties `name` and `age` for each `person` vertex.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-9" type="radio" name="radio-set-1761595063-9" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-9" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-10" type="radio" name="radio-set-1761595063-9" class="tab-selector-2" />
<label for="tab-1761595063-10" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . }""") =⇒[name:marko,age:29] =⇒[name:vadas,age:27] =⇒[name:josh,age:32] =⇒[name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . }""")
++++
</div>
</div>
</section>
++++
==== Pattern Matching
Select only those persons who created a project.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-11" type="radio" name="radio-set-1761595063-11" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-11" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-12" type="radio" name="radio-set-1761595063-11" class="tab-selector-2" />
<label for="tab-1761595063-12" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . ?person e:created ?project . }""") =⇒[name:marko,age:29] =⇒[name:josh,age:32] =⇒[name:josh,age:32] =⇒[name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . ?person e:created ?project . }""")
++++
</div>
</div>
</section>
++++
==== Filtering
Select only those persons who are older than 30.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-13" type="radio" name="radio-set-1761595063-13" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-13" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-14" type="radio" name="radio-set-1761595063-13" class="tab-selector-2" />
<label for="tab-1761595063-14" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . FILTER (?age > 30) }""") =⇒[name:josh,age:32] =⇒[name:peter,age:35]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?name ?age WHERE { ?person v:label "person" . ?person v:name ?name . ?person v:age ?age . FILTER (?age > 30) }""")
++++
</div>
</div>
</section>
++++
==== Deduplication
Select the distinct names of the created projects.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-15" type="radio" name="radio-set-1761595063-15" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-15" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-16" type="radio" name="radio-set-1761595063-15" class="tab-selector-2" />
<label for="tab-1761595063-16" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT DISTINCT ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person e:created ?project . ?project v:name ?name . FILTER (?age > 30)}""") =⇒ripple =⇒lop
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT DISTINCT ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person e:created ?project . ?project v:name ?name . FILTER (?age > 30)}""")
++++
</div>
</div>
</section>
++++
==== Multiple Filters
Select the distinct names of all Java projects.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-17" type="radio" name="radio-set-1761595063-17" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-17" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-18" type="radio" name="radio-set-1761595063-17" class="tab-selector-2" />
<label for="tab-1761595063-18" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT DISTINCT ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person e:created ?project . ?project v:name ?name . ?project v:lang ?lang . FILTER (?age > 30 && ?lang = "java") }""") =⇒ripple =⇒lop
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT DISTINCT ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person e:created ?project . ?project v:name ?name . ?project v:lang ?lang . FILTER (?age > 30 && ?lang = "java") }""")
++++
</div>
</div>
</section>
++++
==== Union
Select all persons who have developed a software in java using union.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-19" type="radio" name="radio-set-1761595063-19" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-19" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-20" type="radio" name="radio-set-1761595063-19" class="tab-selector-2" />
<label for="tab-1761595063-20" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT * WHERE { {?person e:created ?software .} UNION {?software v:lang "java" .} }""") =⇒[software:v[3],person:v[1]] =⇒[software:v[3]] =⇒[software:v[5],person:v[4]] =⇒[software:v[3],person:v[4]] =⇒[software:v[5]] =⇒[software:v[3],person:v[6]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT * WHERE { {?person e:created ?software .} UNION {?software v:lang "java" .} }""")
++++
</div>
</div>
</section>
++++
==== Optional
Return the names of the persons who have created a software in java and optionally python.
[source,groovy]
g.sparql("""SELECT ?person WHERE { ?person v:label "person" . ?person e:created ?software . ?software v:lang "java" . OPTIONAL {?software v:lang "python" . }}""")
==== Order By
Select all vertices with the label `person` and order them by their age.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-21" type="radio" name="radio-set-1761595063-21" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-21" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-22" type="radio" name="radio-set-1761595063-21" class="tab-selector-2" />
<label for="tab-1761595063-22" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?age ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name . } ORDER BY (?age)""") =⇒[age:27,name:vadas] =⇒[age:29,name:marko] =⇒[age:32,name:josh] =⇒[age:35,name:peter]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?age ?name WHERE { ?person v:label "person" . ?person v:age ?age . ?person v:name ?name . } ORDER BY (?age)""")
++++
</div>
</div>
</section>
++++
==== Group By
Select all vertices with the label `person` and group them by their age.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-23" type="radio" name="radio-set-1761595063-23" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-23" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-24" type="radio" name="radio-set-1761595063-23" class="tab-selector-2" />
<label for="tab-1761595063-24" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?age WHERE { ?person v:label "person" . ?person v:age ?age . } GROUP BY (?age)""") =⇒[32:[32],35:[35],27:[27],29:[29]]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?age WHERE { ?person v:label "person" . ?person v:age ?age . } GROUP BY (?age)""")
++++
</div>
</div>
</section>
++++
==== Mixed/complex/aggregation-based queries
Count the number of projects which have been created by persons under the age of 30 and group them by age. Return only
the top two.
[source,groovy]
g.sparql("""SELECT (COUNT(?project) as ?p) WHERE { ?person v:label "person" . ?person v:age ?age . FILTER (?age < 30) ?person e:created ?project . } GROUP BY (?age) LIMIT 2""")
==== Meta-Property Access
Accessing the Meta-Property of a graph element. Meta-Property can be perceived as the reified statements in an RDF
graph.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-25" type="radio" name="radio-set-1761595063-25" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-25" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-26" type="radio" name="radio-set-1761595063-25" class="tab-selector-2" />
<label for="tab-1761595063-26" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal(SparqlTraversalSource).with(graph) =⇒sparqltraversalsource[tinkergraph[vertices:6 edges:14], standard] gremlin> g.sparql("""SELECT ?name ?startTime WHERE { ?person v:name "daniel" . ?person p:location ?location . ?location v:value ?name . ?location v:startTime ?startTime }""") =⇒[name:spremberg,startTime:1982] =⇒[name:kaiserslautern,startTime:2005] =⇒[name:aachen,startTime:2009]
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal(SparqlTraversalSource).with(graph) g.sparql("""SELECT ?name ?startTime WHERE { ?person v:name "daniel" . ?person p:location ?location . ?location v:value ?name . ?location v:startTime ?startTime }""")
++++
</div>
</div>
</section>
++++
==== STAR-shaped queries
STAR-shaped queries are the queries that form/follow a star-shaped execution plan. These in terms of graph traversals
can be perceived as path queries or neighborhood queries. For instance, getting all the information about a specific
`person` or `software`.
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-27" type="radio" name="radio-set-1761595063-27" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-27" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-28" type="radio" name="radio-set-1761595063-27" class="tab-selector-2" />
<label for="tab-1761595063-28" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g.sparql("""SELECT ?age ?software ?lang ?name WHERE { ?person v:name "josh" . ?person v:age ?age . ?person e:created ?software . ?software v:lang ?lang . ?software v:name ?name . }""")
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g.sparql("""SELECT ?age ?software ?lang ?name WHERE { ?person v:name "josh" . ?person v:age ?age . ?person e:created ?software . ?software v:lang ?lang . ?software v:name ?name . }""")
++++
</div>
</div>
</section>
++++
[[sparql-with-gremlin]]
=== With Gremlin
The `sparql()`-step takes a SPARQL query and returns a result. That result can be further processed by standard Gremlin
steps as shown below:
++++
<section class="tabs tabs-2">
<input id="tab-1761595063-29" type="radio" name="radio-set-1761595063-29" class="tab-selector-1" checked="checked" />
<label for="tab-1761595063-29" class="tab-label-1">console (groovy)</label>
<input id="tab-1761595063-30" type="radio" name="radio-set-1761595063-29" class="tab-selector-2" />
<label for="tab-1761595063-30" class="tab-label-2">groovy</label>
<div class="tabcontent">
<div class="tabcontent-1">
++++
[source,groovy]
gremlin> g = traversal(SparqlTraversalSource).with(graph) =⇒sparqltraversalsource[tinkergraph[vertices:6 edges:6], standard] gremlin> g.sparql("SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age }") =⇒[name:marko,age:29] =⇒[name:vadas,age:27] =⇒[name:josh,age:32] =⇒[name:peter,age:35] gremlin> g.sparql("SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age }").select("name") =⇒marko =⇒vadas =⇒josh =⇒peter gremlin> g.sparql("SELECT * WHERE { }").out("knows").values("name") =⇒vadas =⇒josh gremlin> g.withSack(1.0f).sparql("SELECT * WHERE { }"). repeat(outE().sack(mult).by("weight").inV()). times(2). sack() =⇒1.0 =⇒0.4
++++
</div>
</div>
<div class="tabcontent">
<div class="tabcontent-2">
++++
[source,groovy]
g = traversal(SparqlTraversalSource).with(graph) g.sparql("SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age }") g.sparql("SELECT ?name ?age WHERE { ?person v:name ?name . ?person v:age ?age }").select("name") g.sparql("SELECT * WHERE { }").out("knows").values("name") g.withSack(1.0f).sparql("SELECT * WHERE { }"). repeat(outE().sack(mult).by("weight").inV()). times(2). sack()
++++
</div>
</div>
</section>
++++
Mixing SPARQL with Gremlin steps introduces some interesting possibilities for complex traversals.
// LAST LINE
////
////
[[conclusion]]
= Conclusion
image:tinkerpop-character.png[width=100,float=left] The world that we know, you and me, is but a subset of the world
that Gremlin has weaved within The TinkerPop. Gremlin has constructed a fully connected graph and only the subset that
makes logical sense to our traversing thoughts is the fragment we have come to know and have come to see one another
within. But there are many more out there, within other webs of logics unfathomed. From any thought, every other
thought, we come to realize that which is -- The TinkerPop.
////
////
[[acknowledgements]]
= Acknowledgements
image:yourkit-logo.png[width=200,float=left] YourKit supports the TinkerPop open source project with its full-featured
Java Profiler. YourKit, LLC is the creator of innovative and intelligent tools for profiling Java and .NET
applications. YourKit's leading software products: link:http://www.yourkit.com/java/profiler/index.jsp[YourKit Java Profiler]
and link:http://www.yourkit.com/.net/profiler/index.jsp[YourKit .NET Profiler]
image:ketrina-tinkerpop3.png[width=150,float=right] link:http://ketrinayim.tumblr.com[Ketrina Yim] -- Designing
Gremlin and his friends for TinkerPop was one of my first major projects as a freelancer, and it's delightful to
see them on the Web and all over the documentation! Drawing and tweaking the characters over time is like watching
them grow up. They've gone from sketches on paper to full-color logos, and from logos to living characters that
cheerfully greet visitors to the TinkerPop website. And it's been a great time all throughout!
...in the beginning.
